首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K.Y. Yu  C. Sun  Y. Chen  Y. Liu  H. Wang  M.A. Kirk 《哲学杂志》2013,93(26):3547-3562
Monolithic Ag and Ni films and Ag/Ni multilayers with individual layer thickness of 5 and 50?nm were subjected to in situ Kr ion irradiation at room temperature to 1 displacement-per-atom (a fluence of 2?×?1014?ions/cm2). Monolithic Ag has high density of small loops (4?nm in diameter), whereas Ni has fewer but much greater loops (exceeding 20?nm). In comparison, dislocation loops, ~4?nm in diameter, were the major defects in the irradiated Ag/Ni 50?nm film, while the loops were barely observed in the Ag/Ni 5?nm film. At 0.2?dpa (0.4?×?1014?ions/cm), defect density in both monolithic Ag and Ni saturated at 1.6 and 0.2?×?1023/m3, compared with 0.8?×?1023/m3 in Ag/Ni 50?nm multilayer at a saturation fluence of ~1?dpa (2?×?1014?ions/cm2). Direct observations of frequent loop absorption by layer interfaces suggest that these interfaces are efficient defect sinks. Ag/Ni 5?nm multilayer showed a superior morphological stability against radiation compared to Ag/Ni 50?nm film.  相似文献   

2.
A low cost and accurate method for the detection and analytical determination of the cortisol in pharmaceutical preparation, blood serum and urine was developed. The method was based upon the enhancement of fluorescence intensity of the band at 424 nm of the photo probe by different cortisol concentrations in acetonitrile at (pH 5.7, λex?=?320 nm). The influence of the different parameters, e.g. pH, solvent, cortisol concentration and foreign ions concentrations that control the enhancement process of fluorescence intensity of the band of photo probe was critically investigated. The remarkable enhancement of the fluorescence intensity at 424 nm in acetonitrile by various concentrations of cortisol was successfully used as a photo- probe for the assessment of cortisol concentration. The calibration plot was achieved over the concentration range 8.0?×?10?6–5.5?×?10?9 mol L?1 cortisol with a correlation coefficient of 0.998 and a detection limit of 4.7?×?10?9 mol L?1. The developed method is simple and proceeds without practical artifacts compared to the other determination methods.  相似文献   

3.
Chitosan–ZnO nanostructures were prepared by chemical precipitation method using different concentration of zinc chloride and sodium hydroxide solutions. Nanorod-shaped grains with hexagonal structure for samples annealed at 300 °C and porous structure with amorphous morphology for samples annealed at 600 °C were revealed in SEM analysis. X-ray diffraction patterns confirmed the hexagonal phase ZnO with crystallite size found to be in the range of ~24.15–34.83 nm. Blue shift of UV–Vis absorption shows formation of nanocrystals/nanorods of ZnO with marginal increase in band gap. Photoluminescence spectra show that blue–green emission band at 380–580 nm. The chitosan–ZnO nanostructures used on surface of a glassy carbon electrode gives the oxidation peak potential at ~0.6 V. The electrical conductivity of chitosan–ZnO composites were observed at 2.1?×?10?5 to 2.85?×?10?5?S/m. The nanorods with high surface area and nontoxicity nature of chitosan–ZnO nanostructures observed in samples annealed at 300 °C were suitable as a potential material for biosensing.  相似文献   

4.
The CASTEP module of the Materials Studio package was used for calculations of the structural, electronic and optical properties of pure and Cr3+-doped YAl3(BO3)4 (YAB). The exchange-correlation effects were treated within the generalized gradient approximation with the Perdew–Burke–Ernzerhof functional. The Monkhorst–Pack scheme k-points grid sampling was set at 3?×?3?×?4 for the Brillouin zone. The plane-wave basis set energy cutoff was set at 340?eV; ultrasoft pseudopotentials were used for all chemical elements. The convergence parameters were as follows: total energy tolerance 1?×?10?5?eV/atom, maximum force tolerance 0.03?eV/nm, maximal stress component 0.05?GPa and maximal displacement 0.001?Å. The principal absorption peaks of the studied crystal were identified. The influence of 532?nm?cw, 300?mW laser radiation on the observed absorptions was studied.  相似文献   

5.
This study examines the oxygen diffusion into polystyrene (PS) latex/multiwalled carbon nanotube (MWNT) nanocomposite films (PS/MWNT) consisting of various amounts of MWNT via steady state fluorescence technique (SSF). PS/MWNT films were prepared from the mixture of MWNT and pyrene (P)-labeled PS latexes at various compositions at room temperature. These films were then annealed at 170 °C above glass transition (Tg) temperature of PS. Fluorescence quenching measurements were performed for each film separately to evaluate the effect of MWNT content on oxygen diffusion. The Stern-Volmer equation for fluorescence quenching is combined with Fick’s law for diffusion to derive the mathematical expressions. Diffusion coefficients (D) were produced and found to be increased from 1.1?×?10?12 to 41?×?10?12 cm2s?1 with increasing MWNT content. This increase was explained via the existence of large amounts of pores in composite films which facilitate oxygen penetration into the structure.  相似文献   

6.
ABSTRACT

Thermally grown SiO2 thin films on a silicon substrate implanted with 100?keV silicon negative ions with fluences varying from 1?×?1015 to 2?×?1017 ions cm?2 have been investigated using Electron spin resonance, Fourier transforms infrared and Photoluminescence techniques. ESR studies revealed the presence of non-bridging oxygen hole centers, E′-centers and Pb-centers at g-values 2.0087, 2.0052 and 2.0010, respectively. These vacancy defects were found to increase with respect to ion fluence. FTIR spectra showed rocking vibration mode, stretching mode, bending vibration mode, and asymmetrical stretching absorption bands at 460, 614, 800 and 1080?cm?1, respectively. The concentrations of Si–O and Si–Si bonds estimated from the absorption spectra were found to vary between 11.95?×?1021 cm?3 and 5.20?×?1021 cm?3 and between 5.90?×?1021 cm?3 and 3.90?×?1021 cm?3, respectively with an increase in the ion fluence. PL studies revealed the presence of vacancies related to non-bridging oxygen hole centers, which caused the light emission at a wavelength of 720?nm.  相似文献   

7.
SnO2 thin films grown on glass substrates at 300 °C by reactive thermal evaporation and annealed at 600 °C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions?cm?2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions?cm?2 to 1×1013 ions?cm?2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions?cm?2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.  相似文献   

8.
We studied the structural transitions in ferronematics based on the thermotropic nematic liquid crystal MBBA (4 -methoxybenzylidene-4-n-butylaniline) having a nematic-to-isotropic transition temperature T N–I?=?48.0C and in MBBA-based ferronematics doped with a magnetic suspension consisting of Fe3O4 particles (10?nm in diameter) coated with oleic acid as a surfactant. The ferronematic samples were prepared with different volume concentrations of magnetic particles φ?=,1× 10?4, 2× 10?4 and 5×10?4. The temperature dependences of the critical magnetic fields in a bias electric field under strong applied magnetic fields are presented. We calculated the surface density of anchoring energy W at the nematic–magnetic particle boundary. Scaling of the structural transition in the MBBA and MBBA-based ferronematics with the temperature of the nematic-to-isotropic transition was observed.  相似文献   

9.
During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co0.95Pd0.05Te0.05Sb3 (with and without 0.1 at. % cerium doping) and p-type Ce0.9Fe3.5Co0.5Sb12, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300?K and 600?K, the mean CTE values were 9.8–10.3?×?10?6 K?1 for the non-cerium-doped n-type, 11.6?×?10?6 K?1 for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3?×?10?6 K?1 for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600?K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.  相似文献   

10.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared using the method of laser ablation in various liquids at wavelengths of 397, 532, and 795 nm with laser pulses of different duration are studied. An analysis of the dimensional and spectral characteristics of the silver nanoparticles revealed a time dynamics of the nanoparticle size distribution in solutions. It is shown that thermal self-defocusing is observed for the case of nanosecond or shorter pulses generated with a high repetition rate. For picosecond and femtosecond pulses with a low repetition rate, the effects of self-focusing (γ = 3 × 10?13 cm2 W?1) and saturated absorption (β = ?1.5 × 10?9 cm W?1) were observed in the solutions under study. The third-order nonlinear susceptibility of the silver nanoparticles was found to be 5 × 10?8 esu at a wavelength of 397 nm.  相似文献   

11.
Y. Satoh  Y. Abe  H. Abe  Y. Matsukawa  S. Kano  S. Ohnuki 《哲学杂志》2016,96(21):2219-2242
We performed in situ observation of one-dimensional (1D) migration of self-interstitial atom (SIA) clusters in iron under electron irradiation at 110–300 K using high-voltage electron microscopy. Most 1D migration was stepwise positional changes of SIA clusters at irregular time intervals at all temperatures. The frequency of 1D migration did not depend on the irradiation temperature. It was directly proportional to the damage rate, suggesting that 1D migration was induced by electron irradiation. In contrast, the 1D migration distance depended on the temperature: distribution of the distance ranged over 100 nm above 250 K, decreased steeply between 250 and 150 K and was less than 20 nm below 150 K. The distance was independent of the damage rate at all temperatures. Next, we examined fluctuation in the interaction energy between an SIA cluster and vacancies of random distribution at concentrations 10?4–10?2, using molecular statics simulations. The fluctuation was found to trap SIA clusters of 4 nm diameter at vacancy concentrations higher than 10?3. We proposed that 1D migration was interrupted by impurity atoms at temperatures higher than 250 K, and by vacancies accumulated at high concentration under electron irradiation at low temperatures where vacancies are not thermally mobile.  相似文献   

12.
The sensitization of the excited triplet state of a novel symmetrical Bis(dialkylamino)phenoxazinium salt was developed in the presence of Hg2+. This effect was used to determine the concentration of Hg2+ in different water samples. The phenoxazinium salt sensor was characterized by different spectroscopic tools such as: UV, FTIR, NMR and fluorescence spectra. The sensor has an emission band at 347 nm in DMSO. Hg2+ in DMSO at pH 5.6 can remarkably quench the fluorescence intensity of the sensor at 347 nm and a new band was appeared at 436 nm due to the strong complex formation between Hg2+ and sensor. The quenching of the band intensity at 347 and the enhancement of the intensity of the new band at 436 were used to determine the Hg2+ in different waste water samples. The dynamic range found for the determination of Hg2+ concentration is 8.7?×?10-10 – 1.4?×?10-6 mol L?1 with a detection limit of 5.8?×?10?10 mol L?1 and quantification detection limit of 1.8?×?10-9 mol L-1.  相似文献   

13.
The adsorbate induced (1×2) (1×1) (2×1)p1g1 phase transitions on Pt(110) have been studied by Rutherford backscattering (RBS), nuclear microanalysis (NMA), LEED and thermal desorption spectroscopy. RBS data indicate that any displacement of the surface atoms from their expected bulk-like lattice sites in the (1×2) phase is ? 0.002 nm laterally and ? 0.007 nm vertically. This contraint eliminates models for the reconstruction which involve significant lateral displacements (e.g., the paired-atom or hexagonal overlayer models). The RBS data are consistent with both the rumpled model with up/down displacements not exceeding ~0.007 nm and the missing row model with an unrelaxed surface in which the out-of-plane vibrational amplitude is slightly enhanced. A c(8×4) phase, produced by CO (or NO) exposure at T?250 K, has also been characterized by RBS which demonstrated that 0.92×1015 Pt cm?2 move on average by ~0.017 nm laterally out-of-registry with the bulk upon formation of this phase. The values of the saturation adsorbate coverages at T?200K were determined by NMA to be 0.92 ± 0.05×1015, 1.0 ± 0.06×1015 and 1.07 ± 0.10×1015 CO molecules, NO molecules and D atoms, respectively, per cm2. The value of the saturation coverage by CO (θ = 1.0) supports recent models of the (2×1)p1g1 overlayer. The isosteric heat of adsorption of CO is 160 ± 15 kJ mol?1 in the range 0.2?θ?0.5.  相似文献   

14.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

15.
The transition probabilities of two Ar(I) lines and one Ar(II) line have been measured in emission on wall-stabilized argon arc plasmas (0·5×105?p, Nm-2?3×105; 10,000?T, K?20,000; 1022?Ne, m-3?5×1023) using the “method of best fit (MBF)”. The results (without line-wing correction) are for Ar(I) at 714·7 nm, Anm=5·66×105 s-1±5%; for Ar(I) at 430·0 nm, Anm=3·40×105 s-1±5%; for Ar(II) at 480·6 nm, Anm=8·82×107 s-1±7%. These values were not influenced by deviations from LTE, which have been observed at electron number densities ne?1023 m-3. The small uncertainties were achieved after careful corrections of different sources of error.  相似文献   

16.
Transparent and conducting indium tin oxide (ITO) thin films were deposited on soda lime glass substrates by RF plasma magnetron sputtering at room temperature. The effect of thickness (100, 200 and 300?nm) on the physical (structural, optical, electrical) properties of ITO thin films was investigated systematically. It is observed that with an increase in thickness, the X-ray diffraction data indicate polycrystalline films with grain orientations predominantly along (222) and (400) directions; the average grain size increases from 10 to 30?nm; the optical band gap increases from 3.68 to 3.73?eV and the transmission decrease from 80% to 70% . Four-point probes show a low resistivity (2.4×10?5?Ω?cm) values for film with a thickness 300?nm. Present work shows that the ITO is a promising transparent conductive oxide material for the solar cell application.  相似文献   

17.
The pressure variation of the optical edge of GaS has been measured. The direct exciton has been studied up to 6 kbar at 77 K and the indirect edge up to 40 kbar at 300 K. The exciton is shown to have a coefficient of ?2 ± 0.5 × 10?6eV/bar and the indirect edge of ?ll ± 1.5× 10?6eV/bar. A discussion of the values of the pressure coefficients for direct and indirect transitions in gallium chalcogenides is given.  相似文献   

18.
In situ self-ion irradiations (150?keV?W+) have been carried out on W and W–5Re at 500?°C, with doses ranging from 1016 to 1018 W+m?2 (~1.0?dpa). Early damage formation (1016W+m?2) was observed in both materials. Black–white contrast experiments and image simulations using the TEMACI software suggested that vacancy loops were formed within individual cascades, and thus, the loop nucleation mechanism is likely to be ‘cascade collapse’. Dynamic observations showed the nucleation and growth of interstitial loops at higher doses, and that elastic loop interactions may involve changes in loop Burgers vector. Elastic interactions may also promote loop reactions such as absorption or coalescence or loop string formation. Loops in both W and W–5Re remained stable after annealing at 500?°C. One-dimensional hopping of loops (b?=?1/2 ?111>) was only seen in W. At the final dose (1018W+m?2), a slightly denser damage microstructure was seen in W–5Re. Both materials had about 3–4?×?1015 loops m?2. Detailed post-irradiation analyses were carried out for loops of size???4?nm. Both b?=?1/2 ?111? (~75%) and b?= ?100> (~25%) loops were present. Inside–outside contrast experiments were performed under safe orientations to determine the nature of loops. The interstitial-to-vacancy loop ratio turned out close to unity for 1/2 ?111? loops in W, and for both 1/2 ?111? and ?100? loops in W–5Re. However, interstitial loops were dominant for ?100? loops in W. Re seemed to restrict loop mobility, leading to a smaller average loop size and a higher number density in the W-Re alloy.  相似文献   

19.
Polyvinylimidazole (PVIm)-grafted superparamagnetic iron oxide nanoparticles (SPION) (Si-PVIm-grafted Fe3O4 NPs) were prepared by grafting of telomere of PVIm on the SPION. The product identified as magnetite, which has an average crystallite size of 9?±?2?nm as estimated from X-ray line profile fitting. Particle size was estimated as 10.0?±?0.5?nm from TEM micrographs. Mean particle size is found as 8.4?±?1.0?nm which agrees well with the values calculated from XRD patterns (9?±?2?nm). Vibrating Sample Magnetometer (VSM) analysis explained the superparamagnetic nature of the nanocomposite. Thermogravimetric analysis showed that the Si-Imi is 25?% of the Si-PVIm-grafted SPION, which means an inorganic content is about 75?%. Detailed electrical and dielectric properties of the properties of the product are also presented. The conductivity of the sample increases significantly with temperature and has the value in the range of 1.14?×?10?7?C1.78?×?10?4?S?cm?1. Analysis of the real and imaginary parts of the permittivities indicated temperature and frequency dependency representing interfacial polarization and temperature-assisted reorganization effects.  相似文献   

20.
This study presents a novel exposure protocol for synthesized nanoparticles (NPs). NPs were synthesized in gas phase by thermal decomposition of metal alkoxide vapors in a laminar flow reactor. The exposure protocol was used to estimate the deposition fraction of titanium dioxide (TiO2) NPs to mice lung. The experiments were conducted at aerosol mass concentrations of 0.8, 7.2, 10.0, and 28.5 mg m?3. The means of aerosol geometric mobility diameter and aerodynamic diameter were 80 and 124 nm, and the geometric standard deviations were 1.8 and 1.7, respectively. The effective density of the particles was approximately from 1.5 to 1.7 g cm?3. Particle concentration varied from 4 × 105 cm?3 at mass concentrations of 0.8 mg m?3 to 12 × 106 cm?3 at 28.5 mg m?3. Particle phase structures were 74% of anatase and 26% of brookite with respective crystallite sized of 41 and 6 nm. The brookite crystallites were approximately 100 times the size of the anatase crystallites. The TiO2 particles were porous and highly agglomerated, with a mean primary particle size of 21 nm. The specific surface area of TiO2 powder was 61 m2 g?1. We defined mice respiratory minute volume (RMV) value during exposure to TiO2 aerosol. Both TiO2 particulate matter and gaseous by-products affected respiratory parameters. The RMV values were used to quantify the deposition fraction of TiO2 matter by using two different methods. According to individual samples, the deposition fraction was 8% on an average, and when defined from aerosol mass concentration series, it was 7%. These results show that the exposure protocol can be used to study toxicological effects of synthesized NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号