首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The viscosity of carboxymethylchitosan solutions was measured via an Ubbelohde viscometer. The effect of carboxymethylchitosan concentration, pH of the carboxymethylchitosan solution, and concentration of added NaCl and CaCl2 on the reduced viscosity of the carboxymethylchitosan solutions were comparatively investigated. The results showed that the reduced viscosity of the carboxymethylchitosan solution decreased with the increase of carboxymethylchitosan concentration. The reduced viscosity of carboxymethylchitosan decreased with the addition of NaCl and CaCl2, and CaCl2 affected the viscosity more significantly than NaCl. With the increase of pH, the reduced viscosity first decreased and then increased. The interaction between Ca2+ ions and carboxymethylchitosan was studied by means of dynamic light scattering and scanning electron microscopy.  相似文献   

3.
Taking into account that the optical spectroscopy of the Eu2+ ion is quite sensitive to the crystalline environment in which this ion is located, in the present investigation the fluorescence of a small concentration (8 ppmm) of divalent europium incorporated into a NaCl crystal which was also doped with ≈4500 ppmm of Ca2+ has been systematically investigated as a function of different thermal treatments in order to study the calcium-precipitation processes in the host NaCl. The data presented in this paper strongly suggest that the annealing of quenched samples at 200°C produces the incorporation of Eu2+ into the stable dihalide phase CaCl2, as well as into the metastable precipitated CaCl2-like plate zones parallel to the {111} planes of the NaCl matrix. This fact is associated with the increase in intensity of two overlapping emission bands peaking at 430 and 432 nm. On the other hand, the aging of quenched samples at room temperature produces the growth of three emission bands peaking at 400, 414, and 447 nm. The former two emission bands have been associated with Eu2+ embedded into calcium precipitates, the structures of these precipitates being different from that of CaCl2, while the band at 447 nm has been ascribed to europium ions incorporated into the metastable precipitated CaCl2-like plate zones parallel to the {310} planes of the NaCl matrix. Some of the characteristics of the different calcium second phase precipitates have been obtained by measuring the crystal field splitting (10 Dq) of the 4f65d configuration of the divalent europium ions when they were located inside them. Values for the 10 Dq splitting were determined from the excitation spectrum of each of the emission bands associated with the different calcium-precipitated phases.  相似文献   

4.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50?nm (spheroid), 25?nm (rod shape), and 75?nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0?mg?g?1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+?>?Pb2+?>?Cu2+?>?Ni2+, while the following order was determined in multiple component solutions: Pb2+?>?Cu2+?>?Cd2+?>?Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.  相似文献   

5.
The interactions of common environmental contaminants with C60 have been studied to evaluate the environmental impact of carbon nanomaterials. The adsorption and desorption interaction of the hydrophobic contaminants naphthalene and 1,2-dichlorobenzene with C60 was characterized. Processes that cause the wetting and disaggregating of C60 particles also affect the extent of organic contaminant sorption to C60 aggregates by orders of magnitude. C60 dissolved in organic solvents such as toluene can form stable nanoscale aggregates upon vigorous mixing in water. These nanoscale C60 particles form stable suspensions in water and are referred to as ‘nano-C60’. Desorption of contaminants from stable suspensions of nano-C60 exhibits hysteresis. The experimentally observed adsorption/desorption hysteresis is described by a two-compartment desorption model: first, adsorption to the external surfaces that are in contact with water, and second, adsorption to the internal surfaces within the aggregates.  相似文献   

6.
The stability and the possible application of our recently reported SiC heterofullerenes inspire the investigation of their further stabilization through ion encapsulation. The endohedral complexes X@C12Si8, where X=Li+, Na+, K+, Be2+, Mg2+, Ca2+, Al3+, and Ga3+, are probed at the MPWB1K/6-311G? and B3LYP/6-311G* levels of theory. The optimized geometries show the expanding or contracting capability of C12Si8 in order to accommodate metal ion guests. The inclusion energies indicate the stability of the complexes compared to the components. Meanwhile, the calculated binding energies show the stabilization of C12Si8 through the inclusion of Be2+, Mg2+, Al3+, and Ga3+. The host-guest interaction that is probed through NBO atomic charges supports the obtained results. This study refers to “metal ion encapsulation” as a strategy for stabilization of SiC heterofullerenes.  相似文献   

7.
Molecular dynamics (MD) simulations of pure dimethyl sulphoxide (DMSO) and solutions of Na+, Ca2+, Cl?, NaCl and CaCl2 in DMSO have been performed at 298.15 K and 398.15 K in NVT ensembles by using a four-interaction-site model of DMSO and reaction field method for Coulombic interactions. The structure of solvent, ion-solvation shells and ion-pairs have been analysed by employing a concept of coordination centres and characteristic vectors of the solvent molecule. Results are given for atom-atom (corresponding to DMSO), ion-atom and ion-ion radial distribution functions (RDFs), orientation of the DMSO molecules and their geometrical arrangements in the first solvation shells of the ions (Na+, Ca2+, Cl?). A preferential formation of cyclic dimers with antiparallel alignment between dipole moments of nearest-neighbour molecules in the pure solvent is found. Geometrical models of the first coordination shells of the ions in ‘infinitely dilute solutions’ are proposed. Ion-ion RDFs in NaCl-DMSO and CaCl2-DMSO solutions reveal the presence of both solvent separated (SSIP) and contact (CIP) ion pairs. The structures of the solvation shells of such ion pairs are also discussed.  相似文献   

8.
Raman spectra in the O H stretching region of aqueous salt solutions were measured and compared, and the effects of metal ions on water structure deduced. The effects of alkali ions, alkaline ions or the first‐row transition metals on water structure were found to be similar. Differences of metal ionic effects on water structure exist among Na+, Mg2+ and Al3+, and between Ca2+ and Mn2+ and Al3+ and Fe3+. The factors that influence the metal ionic effects on the water structure are the ionic charge, the outmost electronic structure and ionic size, the ionic charge being the most important. With a five‐component Gaussian deconvolution of the Raman spectra of the aqueous solutions of NaCl, MgCl2, AlCl3 and FeCl3 with concentrations of 0 to ∼1mol/l, the ionic effects were found to be similar on the bands at 3233, 3393, 3511 and 3628 cm−1, but different on the band at 3051 cm−1. With increasing polarization of the metal ion, the band at 3051 cm−1, due to strong hydrogen bonding, increases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The compressible ion approach to repulsion which has been shown to work well for the alkali halides (J. Phys. Chem. Solids37, 395 (1976) ; Curr. Sci. 46, 359 (1977)) has been extended to other cubic ionic crystals. Repulsion parameters have been refined for a number of ions and radicals viz., Cu+, Ag+, Tl+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Mn2+, Fe2+, Co2+, Ni2+, Sm2+, Eu2+, Yb2+, Pb2+, H?, O2?, S2?, Se2?, Te2?, NH4+, SH?, SeH?, BrO3?, ClO3?, ClO4?, CN?, NH2?, NO3?, BH4?, BF4?, SO42?, NH2?. Using these parameters, calculations have been made on the lattice spacings and compressibilities of a number of perovskite-like crystals of the form A+B2+C3?. The predicted values agree well with experiment. In the case of four crystals viz., LiBaF3, LiBaH3, LiEuH3 and LiSrH3, there were large discrepancies between the calculated and observed lattice spacings. When these crystals were assumed to be of the inverse perovskite structure, calculations showed good agreement with the experimental data.  相似文献   

10.
Absolute cross sections for electron-impact dissociative excitation and ionization of CD+ 4 leading to formation of ionic products (CD2+ 4, CD+ 3, CD+ 2, CD+, C+, D+ 3, D+ 2, and D+) have been measured. The animated crossed-beams method is applied in the energy range from the reaction threshold up to 2.5 keV. Around 100 eV, the maximum cross sections are found to be (3.8±0.2) ×10-19 cm2,  cm2, (7.1±0.8) ×10-17 cm2, (9.0±0.8) × 10-17 cm2 and (3.7±0.4) ×10-17 cm2 for the heavy carbonaceous ions CD2+ 4, CD+ 3, CD+ 2, CD+ and C+ respectively. For the light fragments, D+ 3, D+ 2, and D+, the cross sections around the maximum are found to be (5.0±0.6) ×10-19 cm2, (1.7± 0.2) ×10-17 cm2 and (10.6±1.0) ×10-17 cm2, respectively. The cross sections are presented in closed analytic forms convenient for implementation in plasma simulation codes. The analysis of ionic product velocity distributions allows determination of the kinetic energy release distributions which are seen to extend from 0 to 9 eV for heavy fragments, and up to 14 eV for light ones. The comparison of present energy thresholds and kinetic energy release with available published data gives information about states contributing to the observed processes. Individual contributions for dissociative excitation and dissociative ionization are determined for each detected product. A complete database including cross sections and energies is compiled for use in fusion application.  相似文献   

11.
The interactions between room temperature ionic liquids (RTILs) and weak fluorescent chemicals still remain unclear, which hinders the complete and efficient utilization of these “green” solvents in fluorescent analyses of organic chemicals. Herein, we reported the effects of four RTILs, [C8MIM]BF4, [C14MIM]BF4, [C8MIM]PF6 and [C14MIM]PF6, on fluorescence behavior of 4-tert-octylphenol (4-t-OP). In the fortified concentration range of 0.2–1.0 mM, the quenching effects were increased with increasing concentrations of RTILs. However, no obvious variation of peak shape of 4-t-OP was observed in the quenching process, suggesting no formation of ground-state complex between fluorophores in 4-t-OP and quencher (ionic liquids). As for anion effect, the fluorescence quenching efficiency of 4-t-OP by BF4 - was greater than PF6 -, but the carbon chain length on the imidazolium ring had no significant relationship with fluorescence intensity of 4-t-OP. Both Ksv values (>1.0?×?103?L/mol.s) and the different temperature effects demonstrated that the quenching of 4-t-OP by four RTILs was the presence of dynamic and static quenching mechanism. The FI of dansyl chloride within [C8MIM]BF4 increased nearly 5-fold as compared to the control, showing a sensitizing effect on the strong fluorescent chemicals, while a quenching effect on 4-t-OP belonging to weak fluorescent chemicals. The fluorescence-enhanced amplitude of dansyl chloride in [C8MIM]PF6 was greater than [C8MIM]BF4. The fluorescence quenching of 4-t-OP by [C8MIM]PF6 did not belong to FRET phenomenon because of no overlap of emission spectrum of 4-t-OP and absorption spectrum of [C8MIM]PF6. When 0.6 mM [C8MIM]PF6 in acetonitrile was used as the solvent, the detection limit of 4-t-OP was 3.7 μg/L, and the linearity range was 0.01–0.8 mg/L (R2?=?0.9990). In summary, these results provide a theoretical foundation for the application of RTILs in weak fluorescent chemicals.  相似文献   

12.
The influences of oxalate anions on manganese electrodeposition in sulfate solution were investigated on the basis of cathode current efficiency, characterization of SEM-EDX and XRD, solution chemistry calculation, thermodynamics and electrochemical test. The experimental results show that the range of (NH4)2C2O4 was adjusted from 0 mol/L to 4.8?×?10?3 mol/L. And 1.5?×?10?3 mol/L (NH4) 2C2O4 was suitably used with initial pH 7.0. The characterization of SEM indicates that oxalate anions can improve the morphology of electrodeposited films. The electrodeposited films containing manganese were characterized and determined by EDX and XRD. The solution chemistry calculation of catholyte and oxalate anions shows that the main active species are MnSO4, Mn(SO4)2? 2, Mn2+, Mn(SO4)C2O2? 4, MnC2O 4, Mn(NH3)2+, and C2O2? 4. The reaction trend between C2O2? 4 and Mn2+ ions is confirmed by computation of reaction energy. Electrochemical test analysis indicates oxalate anions increase the overpotentials of hydrogen evolution reaction and manganese electrodeposition.  相似文献   

13.
By comparing diffusion coefficientsD of bivalent cations Ba2+, Ca2+, Sr2+ in NaCl crystals it was shown that in the temperature range above 550 °CD (Ba2+)>D (Sr2+)>D (Ca2+) is valid. Temperature dependences of jump frequenciesw 2 of these cations are described byw 2 (Ba2+)=(2·15±0·55) × 1012 × exp {?(0·817±0.007)/kT};w 2 (Sr2+)=(2·9±1·1) × 1012 × exp {?(0·84±0.02)/kT} andw 2 (Ca2+)=(5·5±6·5) × 1010 × exp {?(0·51±0·07)/kT}. It was demonstrated that in NaCl crystals the activation enthalpy and the preexponential factor of the jump frequencyw 2 increase with increasing ionic radius and mass of the bivalent alkaline earth cation.  相似文献   

14.
The optical absorption bands of aqueous 0·05 M Sn2+ in 7 M LiI at 77°K appear at 361, 352, 325, 310, 300, 292 and 262 nm. They are considered to be the A1, A2, B, C1, C2, C3 and D′ bands since the positions and relative intensities lie within the range of those bands for Sn2+-doped alkali iodide crystals. Upon warming the glass there is an uncorrelated increase in the B band and a decrease in the A1 band. In 3·6, 4·1, 4·6 and 5·1 M CaCl2 glasses with 5×10?3 M Sn2+ the A1 and A2 bands show uncorrelated increases with increasing concentration of Cl?. Comparable observations are reported for Pb2+-doped glasses of lithium halides and CaI2. In general the spectra of the Sn2+- and Pb2+-doped glasses correlate well with those of the corresponding crystal systems. The effect of temperature and halide-ion concentration are attributed to shifts in chemical equilibria among the well-known halo complexes, MXn2?n MXn?11?n+X?, each having a characteristic, absorption and emission. Absorptions may be attributed to M2+(3P11S0) and M2+(1P11S0) in the complex, shifted by partially covalent bonding of n halide ions.  相似文献   

15.

A new probe (Z)-3-((naphthalen-1-ylmethylene)amino)phenol has been synthesized by condensation reaction between 1-naphthaldehyde and 3-aminophenol for the fluorescent sensing of Ce3+ by “on” mode and dichromate (Cr2O72?) by “off” mode. Metal ions—Ag+, Al3+, As3+, Ba2+, Ca2+, Cd2+, Ce4+, Co2+, Cr3+, Cr6+, Cu2+, Fe2+, Fe3+, Hg2+, K+, La+, Li+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Zn2+and anions Br?, C2O42?, CH3COO?, Cl?, CO32?, F?, H2PO4?, HCO3?, HF2?, HPO42?, I?, MnO4?, NO3?, OH?, S2?, S2O32?, SCN?, SO42? do not interfere. The limit of detection (LOD) for sensing Ce3+ and Cr2O72? ions are 1.286?×?10–7 M and 6.425?×?10–6 M, respectively.

  相似文献   

16.
Jürgen Troe 《Molecular physics》2014,112(18):2374-2383
The relationship between rate constants for dissociation and the reverse association reactions and their potential energy surfaces is illustrated. The reaction systems e? + SF6 ? SF6 ? →SF5 ? + F, H + CH3 ?CH4, 2 CF2 ? C2F4, H + O2 →HO2, HO + O ?HO2 ? H + O2, and C + HO →CHO are chosen as representative examples. The necessity to know precise thermochemical data is emphasised. The interplay between attractive and anisotropic components of the potentials influences the rate constants. Spin–orbit and electronic–rotational coupling in reactions between electronic open-shell radicals so far generally has been neglected, but is shown to have a marked influence on low temperature rate constants.  相似文献   

17.
The ternary oxides CrMnGaO4, NiMnGaO4, CuMnGaO4 and ZnMnGaO4, crystallize in the cubic spinel structure with lattice parametera=8.41±0.02 Å, 8.34±0.02 Å, 8.36±0.02 Å and 8.32±0.02 Å, respectively. The oxidation state of manganese in these spinels was determined x-ray spectroscopically. The site distribution was determined from the structural properties and calculated site preference energies of cations in the lattice. The ionic structures were found to be Ga3+ [Mn2+ Cr3+] O 4 2? . Ga3+ [Cu2+ Mn3+] O 4 2? , Mn2+ [Ga3+ Ni3+] O 4 2? and Zn2+ [Mn3+ Ga3+] O 4 2? .  相似文献   

18.
With the exception of anhydrous SnCl2, in divalent tin fluorides and chlorides, tin(II) is always covalent bonded, i.e. its valence orbitals are hybridized and the tin lone pair is located in one of the hybrid orbitals. This lone pair is highly stereoactive and generates a large efg, resulting in a large quadrupole splitting. A doubly disordered Ba1?x Sn x Cl1+y F1?y solid solution has been prepared and found to contain either ionic tin(II) (Sn2+ ions) or a mixture of ionic and covalent tin(II), depending on x, y and the method of preparation. The ionic tin(II) spectrum in Ba1?x Sn x Cl1+y F1?y gives a Mössbauer single line that is broadened by the lattice efg, like in SnCl2. Now, Sn2+ has been found to be present in an undistorted octahedral coordination in a newly isolated compound, Ba2SnCl6. It should be the first example of Sn2+ that is fully ionic and has a perfectly spherical lone pair.  相似文献   

19.
In this study, we present quantification methods for nanoparticle stability analysis using non-intrusive analytical techniques: attenuated total reflectance, Fourier transform infrared (ATR-FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometer, zeta potential analyses, and dynamic light scattering (DLS). We use these techniques to study the stability of silica nanoparticle dispersions and the effects of pH, temperature, and electrolytes that would be encountered in oil field brines in a reservoir. Spectral analysis of the Si–O bond at wavenumber of 1110 cm−1 with the ATR-FTIR indicates a structural change on the surface of silica particles as the dispersion pH changes, which agrees with zeta potential measurements. We define a critical salt concentration (CSC) for different salts, NaCl, CaCl2, BaCl2, and MgCl2, above which the silica dispersion becomes unstable. Three distinct stages of aggregation occur in the presence of salt: clear dispersed, turbid, and separated phases. Divalent cations Mg2+, Ca2+, and Ba2+ are more effective in destabilizing silica nanoparticle dispersion than the monovalent cation Na+. The CSC for Na+ is about 100 times more than for Ca2+, Ba2+, and Mg2+. Among the divalent cations studied, Mg2+ is the most effective in destabilizing the silica particles. The CSC is independent of silica concentration, and lowers at high temperature.  相似文献   

20.
C42+的几何构型和Jahn Teller效应   总被引:1,自引:0,他引:1       下载免费PDF全文
汪蓉  朱正和  杨传路 《物理学报》2001,50(9):1675-1680
用从头计算法QCISD/6-311G得到了C42+分子的10种不同的几何构型,其中包括Cs,C∞v,C2v,D2h,D∞h,D4h,D2d,C3v等不同的构型.计算表明C42+的Td构型不能稳定存在,详细讨论了Td 关键词: 几何构型 42+')" href="#">C42+ Jahn Teller效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号