首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Abstract
Exposure to artificial UV wavelengths and the UV component of sunlight delays positive phototaxis in the green alga Volvox aureus. Broad band wavelength filters were used to modify the output from UV-B sources (280–320 nm) and natural sunlight. The delay in phototaxis by artificial UV is increased with exposure to shorter UV-B wavelengths. Natural sunlight experiments were performed with exposure to full sunlight and to its UV component only. The UV component present in summer sunlight produced long periods of inhibition in phototaxis and even lethality, while exposure to the total spectrum of sunlight had no significant effects on movement or survival. The data indicate that although this species of alga is well equipped to deal with present levels of UV exposure, increases in the short UV-B wavelengths in sunlight may force an alteration in patterns of photomovement.  相似文献   

2.
We determined the biological weighting function (BWF) of the effect of UV radiation on phototaxis of the freshwater, histophagous ciliate Ophryoglena flava. Dose-effect curves were measured by exposing the cells to 12 different irradiation regimens obtained with two different levels of UV-B radiation and by using six filters with cutoff wavelengths ranging from 280 to 335 nm. The results show that there are significant damages to phototaxis at the doses used and that the effect increases when the cutoff is shifted toward short wavelengths. The data were used to calculate the BWF of phototaxis impairment by applying a nonlinear fit procedure. The BWF thus obtained decays exponentially with increasing wavelength in agreement with similar findings reported in the literature for other systems.  相似文献   

3.
4.
Ultraviolet-B (UV-B; 280-320 nm)-emitting lamps unavoidably emit ultraviolet-A (UV-A; 320-400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength-blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C "contamination" using a liquid potassium chromate (K(2)CrO(4)) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K(2)CrO(4). The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution.  相似文献   

5.
Abstract Monochromatic UV-B irradiation affects neither the absorption nor the fluorescence of the bulk pigments in the desmid Cosmarium cucumis but it impairs photomovement of these organisms at fluence rates which are not higher than the ambient level of solar UV-B irradiation. Photoaccumula-tions and phototaxis are strongly inhibited especially at wavelengths ≤ 300 nm while photodispersal at higher white light fluence rates is hardly affected by supplementary UV-B. This effect has important consequences for the growth and survival of populations in their natural environment: these photosyn-thetic organisms utilize photomovement to find and stay in areas of suitable visible light fluence rates. The UV-B component of solar irradiation both impairs the strategy of the organisms to find a suitable position and the escape mechanism by which the cells move out of areas with too strong white illuminances which photooxidize the bulk pigments and bleach the population within a few days.  相似文献   

6.
The response of the lichen, Cladonia arbuscula (Wallr.) Flot. ssp. mitis (Sandst.) Ruoss to enhanced UV-B (280-315 nm) radiation was investigated with respect to: (a) changes in phenolic content; (b) differential pigment accumulation under visible and UV radiation with increasing distance from thallus apices; and (c) the internal distribution of UV-B radiation within the thallus measured with quartz optical fibres. In a short-term experiment, lichens were exposed for 7 days in a growth chamber to visible light with or without additional UV-B radiation. For a longer term experiment, lichens were grown outdoors under both natural UV radiation, and supplemental UV-A (315-400 nm)+UV-B provided by lamps. Controls were placed under filters that removed the radiation below 290 nm from the natural sunlight. The concentration of total phenolic compounds was measured spectrophotometrically at the termination of the experiments, in different parts of the lichen podetia. UV-exposed lichens showed increased accumulation of phenolics compared to those not grown under UV. At the termination of the long-term experiment, fibre optic measurements of the penetration of radiation into lichen thallus reflected the influence of growth under UV radiation, whereby UV was more strongly attenuated as compared to that in lichens not exposed to enhanced levels of UV-B radiation. Results indicated that in Cladonia, UV-B radiation induces the accumulation of phenolic compounds that may have a protective role. In addition, the morphological distribution of phenolic compounds was different under visible and supplemental UV-B radiation. Internal radiation measurements served to visualise the attenuation of radiation with thallus depth for different wavelengths in the UV-B waveband.  相似文献   

7.
Albino hairless mice (Skh: HR-1) exposed chronically to sub-erythemal doses of UV radiation display physical, visible and histological alterations. Using narrow bandwidth radiation covering the UV radiation spectrum from 280-380 nm, the wavelength dependence of these alterations was determined. The wavelength dependence spectra indicate that for all but one parameter measured (skin sagging), UV-B radiation is considerably more efficient than UV-A radiation in producing changes in the skin. However, in natural sunlight there is considerably more UV-A than UV-B radiation, providing the potential for UV-A to have a larger contribution to skin damage than UV-B. This argues in favor of using broad spectrum photoprotective agents to shield the skin adequately from UV-induced aging. The spectra were also used to develop potential associations among events by determining which events occur at similar wavelengths. There seems to be a correspondence between mouse visible skin wrinking (UV-B event) and two histological events: increase in glycosaminoglycans and alteration in collagen. There was no obvious correspondence among UV-A-induced events.  相似文献   

8.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

9.
This study reports 5 years of (1998-2003) data on continuous solar-irradiation measurements from a scanning spectroradiometer (SUV-100) in Valdivia, Chile (39 degrees S), accompanied by evaluation of the impact of ultraviolet radiation (UVR) on marine macroalgae of this site. UVR conditions showed a strong seasonal variation, which was less pronounced toward longer wavelengths. Daily maximum dose rates (clear days) averaged in winter-summer: UV-B(290-315 nm) 0.30-2.1, UV-B(290-320 nm) 0.70-3.7, UV-A(315-400 nm) 20.6-62.1, UV-A(320-400 nm) 20.2-60.5 W m(-2), and photosynthetically active radiation (PAR) 969-2423 micromol m(-2) s(-1). The corresponding daily doses (all the days) ranged: UV-B(290-315 nm) 2.6-40.7, UV-B(290-320 nm) 6.7-78.5, UV-A(315-400 nm) 228-1539, UV-A(320-400 nm) 224-1501, and PAR 2008-13308 kJ m(-2) d(-1). Taking into consideration action spectra of a biological interest, the risk of UV exposure could be up to 37 times higher in summer than in winter. The photosynthetic activity (as maximum quantum yield of chlorophyll fluorescence, F(v)/F(m)) of the brown alga Lessonia nigrescens from the infralittoral zone was markedly more sensitive to UVR than of the green alga Enteromorpha intestinalis from the upper midlittoral, and the UV-B wave band increased markedly photoinhibition. In L. nigrescens, maximal photoinhibition (40%) took place at weighted (the action spectrum for photoinhibition of photosynthesis) UVR doses of 800 kJ m(-2), irrespective of the season (corresponding midsummer daily dose in Valdivia is 480 kJ m(-2)). In winter, when this alga was at its most sensitive, the weighted UV dose causing 35-40% photoinhibition was around 200 kJ m(-2). In E. intestinalis, weighted doses of 800 kJ m(-2) resulted in low photoinhibition (<10 %) and no clear seasonal patterns could be inferred. These results confirm that midday summer levels of UV-B and their daily doses in southern Chile are high enough to produce stress to intertidal macroalgae.  相似文献   

10.
Urocanic acid, UCA, is characterized by two electronic transitions in the UV-B (280-320 nm) which comprise its broad absorption spectrum and give rise to wavelength-dependent isomerization quantum yields. The absorption spectrum of UCA extends into the UV-A (320-400 nm). Given the UV-A component of sunlight is significantly greater than the UV-B component it is hypothesized even weak UV-A photochemistry of UCA could be important for in vivo responses to UV radiation. Degenerate pump-probe experiments performed on t-UCA at several wavelengths in the UV-A reveal an excited-state absorption that undergoes a rapid, approximately 1 ps decay. Photoacoustic experiments performed on both the cis and trans isomers reveal the formation of a long-lived intermediate following UV-A excitation. The efficiency and action spectra for this latter photoactive process are presented and are similar for both isomers of UCA. Cholesterol hydroperoxide assays designed to investigate the nature of the UV-A photoreactivity of t-UCA confirm the production of reactive oxygen species. The bimolecular rate constant for the quenching of singlet oxygen by t-UCA is determined to be 3.5 x 10(6) M(-1) s(-1). Taking into consideration recent theoretical calculations and jet expansion studies of the electronic structure of gas-phase t-UCA, a model is proposed to explain the isomerization and photoreactivity of t-UCA in solution over the UV-A region.  相似文献   

11.
The mechanisms that cause skin wrinkling in response to chronic exposure to sunlight are unknown. We investigated the possibility that wrinkling of Skh-1 hairless mice is associated with an ultraviolet (UV) radiation-induced immunologic alteration. Exposing Skh-1 hairless mice to a regimen of nonerythemal UV-B (290-320 nm) radiation induced skin wrinkles after 6-7 weeks. Concomitant treatment with cyclosporin A decreased the time to the onset of wrinkles to approximately 4 weeks. Exposing HRS/J hairless mice or athymic nude mice to a similar nonerythemal UV-B radiation regimen for 10 weeks failed to induce skin wrinkles. Concomitant administration of cyclosporin A and UV-B radiation for 7 weeks to HRS/J hairless mice induced no skin wrinkles. Ultraviolet-B or UV-B plus cyclosporin A exposure caused increased immunohistochemical staining for Ia and F4/80 antigens in the upper dermis of tissue from Skh-1 mice, as compared to controls. Treating Skh-1 mice with UV-B radiation plus cyclosporin A was also associated with a large increase in the number of CD3+ cells in the dermis. These staining patterns were absent in similarly treated HRS/J hairless mice. Dermal mast cell numbers in Skh-1 mice were 2-3-fold higher than in HRS/J, athymic nude or NSA mice. Treatment with cyclosporin A increased Skh-1 dermal mast cell numbers approximately 2-fold but had no effect on the dermal mast cell numbers in HRS/J or NSA mice. Based on these findings we postulate that UV-B light and cyclosporin A exacerbate an immunological condition in Skh-1 mice, one consequence of which is manifested as skin wrinkles. Thus, the induction of skin wrinkles in this mouse strain may have no relevance to the wrinkles observed in human skin after chronic exposure to sunlight.  相似文献   

12.
The survival of organisms depends on their ability to adapt to their environment, one important aspect of which is the daily cycle of day and night. During the day, organisms use a variety of strategies to protect themselves from deleterious ultraviolet (UV) wavelengths of sunlight. Among those strategies could be timing of UV-sensitive cellular processes to occur at night to avoid UV-induced damage. We tested whether the unicellular alga Chlamydomonas reinhardtii uses this strategy by measuring the survival of cells following exposure to UV radiation at different phases of the day. Chlamydomonas cells displayed a rhythm of survival from UV radiation where the most sensitive phases occurred during the end of the day and at the beginning of the night. This phase of sensitivity corresponds to the time of nuclear division. The rhythm continues in constant light indicating control by a circadian clock. The results presented here suggest a hypothesis of how circadian clocks may have evolved; a temporal program whereby light-sensitive processes are timed to avoid sunlight-induced damage would be advantageous and therefore selected.  相似文献   

13.
Hypocotyl growth in etiolated seedlings of wild-type and an aurea mutant of tomato (Lycopersicon esculenturn Mill.), that appears to be deficient in labile phytochrome, is strongly inhibited by UV radiation in the region of 300–400 nm. The role of phytochrome in the UV-mediated inhibition of hypocotyl growth was studied using different experimental approaches: (1) by comparing the effectiveness of treatments of increasing duration of exposure to 692 nm and UV radiation; (2) by modifying the UV spectral range with specific cut-off filters. The experimental results suggest that the UV-induced inhibition of growth in wild-type tomato is mediated to a large extent by the longer wavelengths of the UV-A region and is mediated mainly by phytochrome. In contrast, at wavelengths < 305 nm a strong UV-B effect was found in the aurea mutant, suggesting a preeminent action of a specific UV-B absorbing photoreceptor that displays less action in the wild-type.  相似文献   

14.
Abstract— The 'natural purification' of water, processes by which pathogenic organisms disappear from contaminated waters, is of great importance regarding water resources. The relative importance of the various processes which remove undesirable organisms is yet to be determined. Wastewater was exposed to sunlight by placing 120 m/samples in UV transparent or absorptive cylindrical vessels which were then placed in a 50/ container filled with water from a lagoon system, thus simulating actual exposure conditions in the lagoon system. Samples were exposed to natural sunlight for 3 days and received different wavelengths of sunlight, depending upon the presence of predetermined filters. The dynamics of the coliform population was observed. It was noted that coliform bacteria demonstrated a significant growth potential when held in darkness or during the night. An entire day of full unfiltered sunlight was a potent bacteriocidal agent, reducing coliform survival to less than 0.01% of the initial value. Removing the shorter wavelengths (Λ. < 325 nm) by optical filters or by the optical properties of the wastewater itself still left components of sunlight capable of killing coliforms. Our studies support the concept that solar UV radiation makes a substantial contribution to the natural purification of water.  相似文献   

15.
EFFECTS OF ULTRAVIOLET RADIATION ON THE IMMUNE SYSTEM IN HUMANS   总被引:3,自引:0,他引:3  
In experimental animals, exposure to UV-B radiation produces selective alterations of immune function which are mainly in the form of suppression of normal immune responses. This immune suppression is important in the development of nonmelanoma skin cancer, may influence the development and course of infectious disease and possibly protects against autoimmune reactions. The evidence that this form of immune suppression occurs in humans is less compelling and very incomplete. The wavelengths of radiation most affected by a depletion of the stratospheric ozone layer are those known to be most immunosuppressive in animals and it is likely that such depletion will increase any suppressive effect of sunlight on immunity in humans. In addition to establishing whether or not UV-B radiation can cause suppression of immune function in humans, studies are required to determine if melanin can provide protection against such suppression, the role of this suppression in the pathogenesis of skin cancer, the development of infectious disease and vaccine effectiveness, and the capacity for humans to develop adaptive, protective mechanisms which may limit damage from continued exposure to UV-B radiation.  相似文献   

16.
Unialgal cultures of the marine diatom Thalassiosira weissflogii (Grunow) were exposed for 40 days to artificial UV-B radiation in the presence of PAR and UV-A to examine long-term acclimation to UV, PAR and UV-A were supplied 14 h daily, while UV-B (two levels: 0.16 and 0.30 W m(-2) unweighted) was supplied for 4 h/day. Growth rates and photochemical capacity (CFC ratio) both decreased over the first 10-15 days, then recovered. No obvious differences were noted between the responses to the two UV-B treatments. The concentration of the major pigments (chlorophyll a and c(1+2), fucoxanthin and beta,beta-carotene) changed very little with time, except for diatoxanthin. which increased over the first 16 days, decreased over the next 13 days, then increased again from day 29 to the end of the experiment. The concentration of total mycosporine-like amino acids (MAAs) was initially undetectable, then increased from day 16 in the high UV-B treatment and after day 22 in the low UV-B treatment, reaching a maximum on day 29 for both treatments and decreasing afterwards. The synthesis of MAAs proceeded only once photochemical capacity had recovered from the initial UV stress and this recovery likely involved the xanthophyll cycle (diatoxanthin increase). The concentration of MAAs decreased when the cells showed signs of photoinhibition (decrease in CFC ratio). It also showed an inverse trend with diatoxanthin. UV-B alone had little regulatory effect over these responses, except possibly for an earlier synthesis of MAAs under HUV-B conditions. This suggests that the observed changes were due to UV-A rather than to UV-B exposure. The overall response of this coastal diatom to prolonged UV exposure indicates that T. weissflogii is a relatively UV-tolerant species and that its long-term response to UV exposure involves an activation of the xanthophyll cycle followed by the synthesis of MAAs, which may proceed only when photoinhibition is relieved.  相似文献   

17.
18.
Abstract— We have used a flashlamp driven tunable dye laser combined with angle tuned frequency doubling crystals for producing UV-B radiation for action spectra studies of various organisms. Optimum UV-B power generation is needed to provide biologically effective doses at wavelengths greater than 300 nm. Optimizing power will also serve to lengthen the lifetime of dyes and other laser components at shorter wavelengths where UV-B output is more than adequate. While much information is available on dyes and dye performance from manufacturers, little information is available on the use of dyes and dye mixtures for providing the continuous high power spectrum of wavelengths necessary for biological UV action spectroscopy. We have examined a number of dyes and dye mixtures for optimal laser performance at wavelengths from 260 to 330 nm. The dyes and dye mixtures discussed here provide adequate power output in the UV-B wavelength range and have allowed us to perform numerous UV-B action spectra studies using the tunable dye laser.  相似文献   

19.
THE OCULAR DOSE OF ULTRAVIOLET RADIATION FROM SUNLIGHT EXPOSURE   总被引:1,自引:0,他引:1  
Abstract— The ocular toxicity of ultraviolet radiation has been demonstrated in acute photokeratitis and is suspected of contributing to cataractogenesis and senile macular degeneration. While previous studies have emphasized photochemical and epidemiologic aspects of ocular UV-B irradiation, little is known about the extent of such exposure in human subjects. To determine levels of ocular UV-B exposure from sunlight, four mannikin headforms were fitted with UV-B sensitive film (polysulphone) and exposed on an unobstructed rooftop (Baltimore, Md.: latitude = 39.5 degrees) to four hours of sunlight (11 am-3 pm local time) over a three month period (June-August). Simultaneous measurements of ocular and ambient exposure revealed a ratio of 19.5 ± 2.9% that was independent of ambient level (P < 0.05). Measurements performed during earlier hours (8 am-11 am) revealed a similar ratio. Mannikin headforms fitted with brimmed baseball caps showed a22–95% reduction in ocular exposure, depending on the angle of the hat brim to the forehead. Three sets of spectacles substantially reduced ocular UV-B exposure,62–94% dependent on the absorption properties of the spectacle lenses. These anthropomorphic measurements indicate that a substantial percentage of ambient UV-B light is incident upon the cornea and that personal factors, such as wearing a hat or spectacles, can markedly affect UV-B exposure.  相似文献   

20.
Ultraviolet radiation is known to cause both benefits and harmful effects on humans. The adverse effects mainly involve two target organs, skin and eye, and can be further divided into short- and long-term effects. The present case report describes an accidental exposure of two health-care workers to ultraviolet radiation produced by a germicidal lamp in a hospital pharmacy. The germicidal lamp presented a spectrum with an intense UV-C component as well as a modest UV-B contribution. Overexposure to UV-C radiation was over 100 times as large as the ICNIRP exposure limits. A few hours after the exposure, the two subjects reported symptoms of acute UV injury and both of them continued having significant clinical signs for over 2 years. In this study, we describe acute and potentially irreversible effects caused by high UV exposure. In addition, we present the results of risk assessment by occupational exposure to germicidal lamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号