首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
In the theory of nonlinear elasticity of rubber-like materials, if a homogeneous isotropic compressible material is described by a strain–energy function that is a homogeneous function of the principal stretches, then the equations of equilibrium for axisymmetric deformations reduce to a separable first-order ordinary differential equation. For a particular class of such strain–energy functions, this property is used to obtain a general parametric solution to the equilibrium equation for plane strain bending of cylindrical sectors. Specification of the arbitrary function that appears in such strain–energy functions yields some parametric solutions. In some cases, the parameter can be eliminated to yield closed-form solutions in implicit or explicit form. Other possible forms for the arbitrary constitutive function that are likely to yield such solutions are also indicated.  相似文献   

2.
The relations of the nonlinear model of the theory of elasticity are considered. The Cauchy and the strain gradient tensors are taken to be the characteristics of the stress-strain state of a body. Sufficient conditions under which the static equations of elasticity are of elliptic type are established. These conditions are expressed in the form of constraints imposed on the derivatives of the elastic potential with respect to the strain-measure characteristics. The cases of anisotropic and isotropic bodies are treated, including the case where the Almansi tensor is taken to be the strain measure. The plane strain of a body is investigated using actual-state variables. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 196–203, March–April, 1999.  相似文献   

3.
For materials characterized by a linear relation between Almansi strains and Cauchy stresses, relations between stresses and complex potentials are obtained and the plane static problem of the theory of elasticity is thus reduced to a boundary-value problem for the potentials. The resulting relations are nonlinear in the potentials; they generalize well-known Kolosov's formulas of linear elasticity. A condition under which the results of the linear theory of elasticity follow from the nonlinear theory considered is established. An approximate solution of the nonlinear problem for the potentials is obtained by the small-parameter method, which reduces the problem to a sequence of linear problems of the same type, in which the zeroth approximation corresponds to the problem of linear elasticity. The method is used to obtain both exact and approximate solutions for the problem of the extension of a plate with an elliptic hole. In these solutions, the behavior of stresses on the hole contour is illustrated by graphs. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 133–143, January–February, 2000.  相似文献   

4.
This paper presents stress-strain constitutive equations for anisotropic elastic materials. A special attention is given to the logarithmic strain. Assuming a constitutive equation for the specific internal energy the equation governing the Cauchy stress is derived. Mathematical relations presented take a relatively simple form and concern a very wide class of elastic materials. The dependence of third-order elastic constants on the choice of strain measure is shown. The third-order elastic constants measured experimentally in relation to the Green strain are recalculated here for the logarithmic strain. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The Method of Integrodifferential Relations for Linear Elasticity Problems   总被引:1,自引:0,他引:1  
Some possible modifications of the governing equations of the linear theory of elasticity are considered. The stress–strain relation is specified by an integral equality instead of the local Hooke’s law. The modified integrodifferential boundary value problem is reduced to the minimization of a nonnegative functional under differential constraints. A numerical algorithm based on polynomial approximations of unknown functions (stresses and displacements) is developed and applied to linear elasticity problems. The bilateral estimation criteria of solution errors are proposed in order to analyze the algorithm convergence rate. The numerical results obtained by applying the integrodifferential relation method and the conventional variational method are compared and discussed.  相似文献   

6.
A refined Timoshenko-type model based on the straight-line hypothesis is used to develop an approach to analyzing the stress state of longitudinally corrugated cylindrical shells with elliptic cross-section. The approach is to reduce the two-dimensional boundary-value problem that describes the stress–strain state of the shell to a one-dimensional one and to solve it with the stable numerical discrete-orthogonalization method. The solutions obtained using the straight-line hypothesis and the equations of three-dimensional elasticity are compared. The dependence of the stress–strain state of the shell on the number and amplitude of corrugations and the aspect ratio of the cross-section is analyzed  相似文献   

7.
We consider a residually-stressed, uniform hyperelastic body whose stored energy is quadratic with respect to the Green–St. Venant strain. We show that, in the limit of vanishing loads, suitable minimizing sequences converge to the unique minimizer of the energy functional of linear elasticity. We also deduce the standard stress-strain relations for linear elasticity with residual stress.  相似文献   

8.
Estimates on the distribution of the elastic energy in a cylindrical domain in the context of linear elasticity are obtained. The estimates remain valid when the total elastic energy is infinite, and they can be used to establish Saint-Venant's principle without an assumption about finiteness of the total energy.Examples of boundary conditions resulting in infinite energy are constructed in the context of both linear elastostatics and special finite elastostatics, where a quadratic strain energy density function is assumed. The examples show that estimates of the type obtained are sometimes necessary.The results obtained are valid with obvious modifications in a space of any dimension n2.The results in this paper represent a partial fulfilment of the requirements for the degree of Doctor of Philosophy at Tel Aviv University by Y.S. under the guidance of J.J.R.  相似文献   

9.
Microdeformation patterns of lamellar TiAl specimens with various grain sizes under uniaxial tension are mapped using the micro/nano experimental mechanics technique called SIEM (Speckle Interferometry w ith Electron Microscopy). The stress–strain relationships were obtained from deformations within decreasing areas ranging from mm2 to μm2. We found that the stress–strain relationship of the material depends on the size of strain measuring area in relation to the grain size. The stiffness at a grain boundary can be as large as 7–10 times more than that of the grain itself. From the data obtained so far, it seems that the traditional way of using PST (polysynthetically twinned) single crystal to predict polycrystalline behavior may not be appropriate.  相似文献   

10.
We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one convex elastic energy.  相似文献   

11.
In this study, the generally anisotropic and angularly inhomogeneous wedge under a monomial type of distributed loading of order n of, the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations, is constructed. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. The special cases of loading of order n=−1 and n=−2, where the self-similarity approach is not valid, are examined and the stress and displacements fields are derived. Applications are presented for the cases of an angularly inhomogeneous wedge and in the case of a bi-material isotropic wedge.  相似文献   

12.
It is the purpose of this work to derive the balance laws (in the Günther–Knowles–Sternberg sense) pertaining to dipolar gradient elasticity. The theory of dipolar gradient (or grade 2) elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78] and is appropriate to model materials with periodic structure. According to this theory, the strain–energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the gradient of both strain and rotation (additional terms). The balance laws are derived here through a more straightforward procedure than the one usually employed in classical elasticity (i.e. Noether’s theorem). Indeed, the pertinent balance laws are obtained through the action of the standard operators of vector calculus (grad, curl and div) on appropriate forms of the Hamiltonian of the system under consideration. These laws are directly related to the energy release rates in the processes of crack translation, rotation and self-similar expansion. Under certain conditions, they are identified with conservation laws and path-independent integrals are obtained.  相似文献   

13.
An experimental study is undertaken to examine the dynamic stress–strain characteristics of ligaments from the human cervical spine (neck). Tests were conducted using a tensile split Hopkinson bar device and the engineering strain rates imposed were of the order of 102∼103/s. As ligaments are extremely soft and pliable, specialized test protocols applicable to Hopkinson bar testing were developed to facilitate acquisition of reliable and accurate data. Seven primary ligaments types from the cervical spines of three male cadavers were subjected to mechanical tests. These yielded dynamic stress–strain curves which could be approximated by empirical equations. The dynamic failure stress/load, failure stain/deformation, modulus/stiffness, as well as energy absorption capacity, were obtained for the various ligaments and classified according to their location, the strain rate imposed and the cadaveric source. Compared with static responses, the overall average dynamic stress–strain behavior foreach type of ligament exhibited an elevation in strength but reduced elongation.  相似文献   

14.
Shape-memory alloys undergo a solid-to-solid phase transformation involving a change of crystal structure. We examine model problems in the scalar setting motivated by the situation when this transformation is induced by the application of stress in a polycrystalline material made of numerous grains of the same crystalline solid with varying orientations. We show that the onset of transformation in a granular polycrystal with homogeneous elasticity is in fact predicted accurately by the so-called Sachs bound based on the ansatz of uniform stress. We also present a simple example where the onset of phase transformation is given by the Sachs bound, and the extent of phase transformation is given by the constant strain Taylor bound. Finally we discuss the stress–strain relations of the general problem using Milton–Serkov bounds.  相似文献   

15.
This work is concerned with the homogenization of solids reinforced by aligned parallel continuous fibers or weakened by aligned parallel cylindrical pores and undergoing large deformations. By alternatively exploiting the nominal and material formulations of the corresponding homogenization problem and by applying the implicit function theorem, it is shown that locally homogeneous deformations can be produced in such inhomogeneous materials and form a differentiable manifold. For every macroscopic strain associated to a locally homogeneous deformation field, the effective nominal or material stress–strain relation is exactly determined and connections are also exactly established between the effective nominal and material elastic tangent moduli. These results are microstructure-independent in the sense that they hold irrespectively of the transverse geometry and distribution of the fibers or pores. A porous medium consisting of a compressible Mooney–Rivlin material with cylindrical pores is studied in detail to illustrate the general results. This work was the first time presented at the Euromech Colloqium 464 on “Fiber-reinforced Solids: Constitutive Laws and Instabilities”, September 28–October 1, 2004, Cantabria, Spain.  相似文献   

16.
The stress–strain state of an orthotropic spherical shell with thickness varying in two coordinate directions is analyzed. Different boundary conditions are considered, and a refined problem statement is used. A numerical analytic method based on spline-approximation and discrete orthogonalization is developed. The stress–strain state of spherical orthotropic shells with variable thickness is studied  相似文献   

17.
The problem of determining the stress—strain state of a multilayered shell is solved. It is assumed that the layer material is nonlinearly elastic and the strain—displacement relations are nonlinear. The displacements are expanded in terms of the functions of transverse coordinate that contain unknown parameters. The governing equations are derived with the use of the Lagrange variational principle. A technique for minimizing the energy functional is proposed. An example of a three–layered beam is considered, calculation results are compared with the exact solution, and the specific features of the approach proposed are analyzed.  相似文献   

18.
The elastic equilibrium of an isotropic plane with one linear defect under conditions of longitudinal shear is considered. The strain field is constructed by the solution of a twodimensional boundary-value Riemann problem with variable coefficients. A special method that reduce the general two-dimensional problem to two one-dimensional problems is proposed. The strain field is described by three types of asymptotic relations: for the tups of the defect, for the tips of the reinforcing edge, and also at a distance from the closely spaced tips of the defect and the rib. The general form of asymptotic relations for strains with finite energy is deduced from analysis of the variational symmetries of the equations of longitudinal shear. A paradox of the primal mixed boundary-value problem for cracks is formulated and a method of solving the problem is proposed. Novosibirsk State Technical University, Novosibirsk 630092. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 163–172, May–June, 1998.  相似文献   

19.
Recently, a very general and novel class of implicit bodies has been developed to describe the elastic response of solids. It contains as a special subclass the classical Cauchy and Green elastic bodies. Within the class of such bodies, one can obtain through a rigorous approximation, constitutive relations for the linearized strain as a nonlinear function of the stress. Such an approximation is not possible within classical theories of Cauchy and Green elasticity, where the process of linearization will only lead to the classical linearized elastic body.In this paper, we study numerically the states of stress and strain in a finite rectangular plate with an elliptic hole and a stepped flat tension bar with shoulder fillets, within the context of the new class of models for elastic bodies that guarantees that the linearized strain would stay bounded and limited below a value that can be fixed a priori, thereby guaranteeing the validity of the use of the model. This is in contrast to the classical linearized elastic model, wherein the strains can become large enough in the body leading to an obvious inconsistency.  相似文献   

20.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号