首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We consider a variant of the constrained shortest path problem, where the constraints come from a set of forbidden paths (arc sequences) that cannot be part of any feasible solution. Two solution approaches are proposed for this variant. The first uses Aho and Corasick's keyword matching algorithm to filter paths produced by a k-shortest paths algorithm. The second generalizes Martins' deviation path approach for the k-shortest paths problem by merging the original graph with a state graph derived from Aho and Corasick's algorithm. Like Martins' approach, the second method amounts to a polynomial reduction of the shortest path problem with forbidden paths to a classic shortest path problem. Its significant advantage over the first approach is that it allows considering forbidden paths in more general shortest path problems such as the shortest path problem with resource constraints.  相似文献   

2.
For a directed network in which vector weights are assigned to arcs, the Pareto analog to the shortest path problem is analyzed. An algorithm is presented for obtaining all Pareto shortest paths from a specified node to every other node.  相似文献   

3.
《Optimization》2012,61(8):1039-1073
This article deals with multicriteria optimization models and algorithms of movement scheduling for many objects to synchronize their movement (2CMSS problem). The model consists of two parts: (1) node–disjoint path planning visiting specified nodes for K objects with a given vector of intermediate nodes for each one (NDSP problem); (2) movement synchronization in some intermediate nodes (MS problem). For synchronous movement, two categories of criteria are defined: time of movement and ‘distance’ of K-moved objects from the movement pattern. We defined the problem as a discrete-continuous, non-linear, two-criteria mathematical programming problem. We proposed to use a two-stage algorithm to solve the 2CMSS problem (as lexicographic solution): At first we have to find the vector of node–disjoint shortest paths for K objects visiting intermediate nodes to set optimal paths under the assumption that we use maximal possible velocities on each arc belonging to a path for each object (solution of the NDSP problem), and next we try to decrease the values of velocities to optimize the second criterion (synchronization, solution of the MS problem). Experimental analyses of effectiveness and complexity of the algorithms are presented.  相似文献   

4.
This paper is concerned with the design and analysis of algorithms for optimization problems in arc-dependent networks. A network is said to be arc-dependent if the cost of an arc a depends upon the arc taken to enter a. These networks are fundamentally different from traditional networks in which the cost associated with an arc is a fixed constant and part of the input. We first study the arc-dependent shortest path (ADSP) problem, which is also known as the suffix-1 path-dependent shortest path problem in the literature. This problem has a polynomial time solution if the shortest paths are not required to be simple. The ADSP problem finds applications in a number of domains, including highway engineering, turn penalties and prohibitions, and fare rebates. In this paper, we are interested in the ADSP problem when restricted to simple paths. We call this restricted version the simple arc-dependent shortest path (SADSP) problem. We show that the SADSP problem is NP-complete. We present inapproximability results and an exact exponential algorithm for this problem. We also extend our results for the longest path problem in arc-dependent networks. Additionally, we explore the problem of detecting negative cycles in arc-dependent networks and discuss its computational complexity. Our results include variants of the negative cycle detection problem such as longest, shortest, heaviest, and lightest negative simple cycles.2  相似文献   

5.
We study cooperative games that arise from the problem of finding shortest paths from a specified source to all other nodes in a network. Such networks model, among other things, efficient development of a commuter rail system for a growing metropolitan area. We motivate and define these games and provide reasonable conditions for the corresponding rail application. We show that the core of a shortest path game is nonempty and satisfies the given conditions, but that the Shapley value for these games may lie outside the core. However, we show that the shortest path game is convex for the special case of tree networks, and we provide a simple, polynomial time formula for the Shapley value in this case. In addition, we extend our tree results to the case where users of the network travel to nodes other than the source. Finally, we provide a necessary and sufficient condition for shortest paths to remain optimal in dynamic shortest path games, where nodes are added to the network sequentially over time.  相似文献   

6.
This paper describes algorithms to compute Voronoi diagrams, shortest path maps, the Hausdorff distance, and the Fréchet distance in the plane with polygonal obstacles. The underlying distance measures for these algorithms are either shortest path distances or link distances. The link distance between a pair of points is the minimum number of edges needed to connect the two points with a polygonal path that avoids a set of obstacles. The motivation for minimizing the number of edges on a path comes from robotic motions and wireless communications because turns are more difficult in these settings than straight movements.Link-based Voronoi diagrams are different from traditional Voronoi diagrams because a query point in the interior of a Voronoi face can have multiple nearest sites. Our site-based Voronoi diagram ensures that all points in a face have the same set of nearest sites. Our distance-based Voronoi diagram ensures that all points in a face have the same distance to a nearest site.The shortest path maps in this paper support queries from any source point on a fixed line segment. This is a middle-ground approach because traditional shortest path maps typically support queries from either a fixed point or from all possible points in the plane.The Hausdorff distance and Fréchet distance are fundamental similarity metrics for shape matching. This paper shows how to compute new variations of these metrics using shortest paths or link-based paths that avoid polygonal obstacles in the plane.  相似文献   

7.
We investigate the single-source-single-destination “shortest” path problem in directed, acyclic graphs with ordinal weighted arc costs. We define the concepts of ordinal dominance and efficiency for paths and their associated ordinal levels, respectively. Further, we show that the number of ordinally non-dominated path vectors from the source node to every other node in the graph is polynomially bounded and we propose a polynomial time labeling algorithm for solving the problem of finding the set of ordinally non-dominated path vectors from source to sink.  相似文献   

8.
Computing shortest paths with two or more conflicting optimization criteria is a fundamental problem in transportation and logistics. We study the problem of finding all Pareto-optimal solutions for the multi-criteria single-source shortest-path problem with nonnegative edge lengths. The standard approaches are generalizations of label-setting (Dijkstra) and label-correcting algorithms, in which the distance labels are multi-dimensional and more than one distance label is maintained for each node. The crucial parameter for the run time and space consumption is the total number of Pareto optima. In general, this value can be exponentially large in the input size. However, in various practical applications one can observe that the input data has certain characteristics, which may lead to a much smaller number—small enough to make the problem efficiently tractable from a practical viewpoint. For typical characteristics which occur in various applications we study in this paper whether we can bound the size of the Pareto set to a polynomial size or not. These characteristics are also evaluated (1) on a concrete application scenario (computing the set of best train connections in view of travel time, fare, and number of train changes) and (2) on a simplified randomized model. It will turn out that the number of Pareto optima on each visited node is restricted by a small constant in our concrete application, and that the size of the Pareto set is much smaller than our worst case bounds in the randomized model. A preliminary short version of this paper appeared in the Proceedings of the 5th Workshop on Algorithm Engineering (WAE 2001), LNCS 2141, Springer Verlag, pp. 185–197 (2001) under the title “Pareto shortest paths is often feasible in practice.”  相似文献   

9.
This paper studies an arc routing problem with capacity constraints and time-dependent service costs. This problem is motivated by winter gritting applications where the “timing” of each intervention is crucial. The exact problem-solving approach reported here first transforms the arc routing problem into an equivalent node routing problem. Then, a column generation scheme is used to solve the latter. The master problem is a classical set covering problem, while the subproblems are time-dependent shortest path problems with resource constraints. These subproblems are solved using an extension of a previously developed algorithm. Computational results are reported on problems derived from a set of classical instances of the vehicle routing problem with time windows.  相似文献   

10.
An isometric path is merely any shortest path between two vertices. If the vertices of the hypercube Qn are represented by the set of 0–1 vectors of length n, an isometric path is obtained by changing the coordinates of a vector one at a time, never changing the same coordinate more than once. The minimum number of isometric paths required to cover the vertices of Qn is at least 2n/(n+1). We show that when n+1 is a power of 2, the lower bound is in fact the minimum. In doing so, we construct a family of disjoint isometric paths which can be used to find an upper bound for additional classes of hypercubes.  相似文献   

11.
This paper considers the problem of finding paths from a fixed node to all other nodes of a directed graph which minimise a function defined on the paths. Under certain assumptions a characterisation of optimal paths is derived. Two algorithms which are generalisations of standard shortest path methods are then given.  相似文献   

12.
A time-constrained shortest path problem is a shortest path problem including time constraints that are commonly modeled by the form of time windows. Finding K shortest paths are suitable for the problem associated with constraints that are difficult to define or optimize simultaneously. Depending on the types of constraints, these K paths are generally classified into either simple paths or looping paths. In the presence of time–window constraints, waiting time occurs but is largely ignored. Given a network with such constraints, the contribution of this paper is to develop a polynomial time algorithm that finds the first K shortest looping paths including waiting time. The time complexity of the algorithm is O(rK2|V1|3), where r is the number of different windows of a node and |V1| is the number of nodes in the original network.  相似文献   

13.
张振坤  王斌 《数学季刊》2007,22(4):530-537
The shortest path problem in a network G is to find shortest paths between some specified source vertices and terminal vertices when the lengths of edges are given. The structure of the optimal solutions set on the shortest paths is studied in this paper. First,the conditions of having unique shortest path between two distinguished vertices s and t in a network G are discussed;Second,the structural properties of 2-transformation graph (?) on the shortest-paths for G are presented heavily.  相似文献   

14.
This paper addresses a variant of the quickest path problem in which each arc has an additional parameter associated to it representing the energy consumed during the transmission along the arc while each node is endowed with a limited power to transmit messages. The aim of the energy-constrained quickest path problem is to obtain a quickest path whose nodes are able to support the transmission of a message of a known size. After introducing the problem and proving the main theoretical results, a polynomial algorithm is proposed to solve the problem based on computing shortest paths in a sequence of subnetworks of the original network. In the second part of the paper, the bi-objective variant of this problem is considered in which the objectives are the transmission time and the total energy used. An exact algorithm is proposed to find a complete set of efficient paths. The computational experiments carried out show the performance of both algorithms.  相似文献   

15.
In this paper, we study the shortest path tour problem in which a shortest path from a given origin node to a given destination node must be found in a directed graph with non-negative arc lengths. Such path needs to cross a sequence of node subsets that are given in a fixed order. The subsets are disjoint and may be different-sized. A polynomial-time reduction of the problem to a classical shortest path problem over a modified digraph is described and two solution methods based on the above reduction and dynamic programming, respectively, are proposed and compared with the state-of-the-art solving procedure. The proposed methods are tested on existing datasets for this problem and on a large class of new benchmark instances. The computational experience shows that both the proposed methods exhibit a consistent improved performance in terms of computational time with respect to the existing solution method.  相似文献   

16.
The time-constrained shortest path problem is an important generalisation of the classical shortest path problem and in recent years has attracted much research interest. We consider a time-schedule network, where every node in the network has a list of pre-specified departure times and departure from a node may take place only at one of these departure times. The objective of this paper is to find the first K minimum cost simple paths subject to a total time constraint. An efficient polynomial time algorithm is developed. It is also demonstrated that the algorithm can be modified for finding the first K paths for all possible values of total time.  相似文献   

17.
Label Correcting Methods to Solve Multicriteria Shortest Path Problems   总被引:2,自引:0,他引:2  
In this paper, we deal with the solution of the multicriteria shortest path problem. In particular, we present a class of labeling methods to generate the entire set of Pareto-optimal path-length vectors from an origin node s to all other nodes in a multicriteria network. The proposed methods are supported theoretically by the principle of optimality and they are defined on the basis of various innovative node and label selection strategies.Computational results comparing the proposed methods to state-of-the-art approaches to solve the problem considered are also reported. They indicate that our methods are competitive in general; in several cases, they outperform all the other codes.  相似文献   

18.
Based on a pair of primal-dual LP formulations of the shortest path tree problem, the first algorithmic approach to reoptimizing the shortest paths subject to changes in the edge weights was proposed by S. Pallottino and M.G. Scutellá in 2003. We shall here focus solely on their introductory sections, propose some simplifications of the models considered, and finally relate the resulting models to the presentation of single-source shortest path problems in textbooks treating this subject with but limited or no reference to LP.Received: April 2004, Revised: August 2004, MSC classification: 90C05, 90C35, 90B10 Dedicated to the memory of Stefano Pallottino  相似文献   

19.
The paper deals with the existence and characterization of minimum or extremum paths connecting two given points in a vector space, which is divided by a barrier (a curve C if the space is 2-dimensional) into two parts with different norms. The global problem of existence of polygonal paths of shortest length is dealt with in Section 2. An example shows that, for a curve with a point of inflection, such paths may not exist. However, the existence of such paths is proved for a more restricted class of curves (Theorem 2.3). The notion of permissible polygonal paths is introduced, and it is shown that, for a very general class of curves, such paths of shortest length do exist (Theorem 2.2).Sections 3 and 4 deal with the local conditions at the intersection of the extremal path with the curve C. Theorem 4.1 establishes a geometric characterization of the point of intersection, and Eqs. (13) and (15) are formulas for the angles that the segments of the extremal path make with a fixed axis or with the normal to C at the point of intersection. The case where the unit circles of the tax norms are Euclidean circles with different radii leads to the traditional Snell law. Section 6 deals with the law of reflection at the curve C, which in the case of the Euclidean norm asserts the equality of the angles of incidence and reflection. The n-dimensional case, where the curve C is replaced by a hypersurface, is considered briefly in Section 7.  相似文献   

20.
We consider a variation of the classical Markov–Dubins problem dealing with curvature-constrained, shortest paths in the plane with prescribed initial and terminal positions and tangents, when the lower and upper bounds of the curvature of the path are not necessarily equal. The motivation for this problem stems from vehicle navigation applications, when a vehicle may be biased in taking turns at a particular direction due to hardware failures or environmental conditions. After formulating the shortest path problem as a minimum-time problem, a family of extremals, which is sufficient for optimality, is characterized, and subsequently the complete analytic solution of the optimal synthesis problem is presented. In addition, the synthesis problem, when the terminal tangent is free, is also considered, leading to the characterization of the set of points that can be reached in the plane by curves satisfying asymmetric curvature constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号