首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pressure dependences of the thermopower and electrical resistivity of the La0.75Ca0.25MnO3 manganite are measured in the pressure range 0–20 GPa at room temperature. The absolute value of the thermopower increases in the pressure range 0–3 GPa and decreases at higher pressures. At the same time, the electrical resistivity decreases over the entire pressure range. It is found that the competing effect of the closing of the bandgap, which is determined by the activation energy for the thermopower, and the pressure broadening of the d bands is the cause of the observed behavior of the thermoelectric properties of La0.75Ca0.25MnO3, which is untypical for the majority of dielectrics and semiconductors with single-band unipolar conductivity in the absence of phase transitions and is accompanied by a change in the sign of the pressure coefficient of the thermopower. The interrelation between the magnetic and thermoelectric properties of manganites under pressure is analyzed in the framework of the double exchange model. The causes of the considerable decrease in the pressure coefficients of the insulator-metal transition and Curie temperatures under pressure experimentally observed in manganites are discussed.  相似文献   

2.
《Physics letters. A》2006,359(5):528-533
Sm1−xLaxS for x more than a few percents are metals at ambient conditions. At low temperature and high pressure they develop a small gap in the order of some meV and become semiconductors or insulators. This has been interpreted as a manifestation of the excitonic insulator. In this Letter we will concentrate on Sm0.90La0.10S, which is the only composition showing a first order transition. Measurements of the volume change with pressure at ambient temperature show this first order volume collapse at 5 kbar with hysteresis. The resistivity is measured in function of temperature and pressure and exhibits also at 5 kbar and ambient temperature a first order phase transition to a more metallic state. At low temperatures and in function of pressure the resistivity exhibits a peak. The optical reflectivity at 300 K has been measured at low and high pressure and transforms with pressure above 5 kbar into the golden metallic phase.  相似文献   

3.
The superconductivity of Li under pressure is studied by a density functional method. Structural and elastic properties, transition temperature (Tc), density of states (DOS), are considered for the material at ambient and at higher pressures. The calculations, particularly of Tc and DOS as a function of pressure, are compared with other available results. This is in view of the wide difference between the previously predicted maximum Tc-value and those observed by both magnetic susceptibility and electrical resistivity experiments. The present calculations yield better estimates of Tc and other parameters with respect to measured values.  相似文献   

4.
Spin–orbit coupling, locking the momentum of an electron to its spin, has been shown essential for giving rise to many novel physical behaviors. SrIrO3 is a typical metallic member of the strong spin–orbit coupling iridate family. Its orthorhombic phase has been confirmed as a paramagnetic semimetal resulted from the interplay among spin–orbit coupling, electron correlation, and crystal field, and was theoretically predicted to host versatile topological phases. This article reviews the current knowledge on the preparation and the tunable properties of orthorhombic SrIrO3 films. Experiments have demonstrated that orthorhombic SrIrO3 can be successfully synthesized as films under substrate lattice constraint without high pressure, and the films frequently display metal-insulator transition due to disorder and weak-antilocalization owing to spin-orbit coupling. The properties of orthorhombic SrIrO3 film are sensitive to the rotation and tilting of the IrO6 octahedral, and consequently can be significantly tuned through strain engineering. Simultaneously, thickness-dependent size effect is also remarkable in SrIrO3 films. The accumulated research on SrIrO3 films suggests an urgent demand for research on superlattices constructed with orthorhombic SrIrO3, to better understand the mechanism of the electron structure evolution, and thus the relevant magnetic states and topological phases in orthorhombic SrIrO3 and its family.  相似文献   

5.
The magnetic and transport properties of La1?x Mn1+x O3 manganites with excess manganese are studied. It is shown that magnetic and charge ordering heavily depends on the superstoichiometric manganese content, magnetic field, and pressure. The magnetoresistive effect (MRE) is enhanced as the manganese concentration increases. In addition to the paramagnet-ferromagnet transition, the temperature dependences of the magnetization exhibit anomalies at low temperatures in samples with x=0.1–0.4. The magnetization decreases at T<45 K in fields H<0.2 kOe and increases as H changes from 0.2 to 10 kOe. An analysis shows that the features observed at low temperatures are most probably related to the transition from the ferromagnetic state to the canted spin structure in clusters of mixed-valence manganese ions. The temperature dependences of the magnetization and resistivity remain unchanged as the pressure increases. It is demonstrated that the Curie and metal-dielectric transition temperatures shift to higher values as the manganese concentration increases under pressure. The temperature of the MRE peak increases under pressure, while the MRE decreases.  相似文献   

6.
The crystal structure and vibrational spectra of deuterated pyridinium perchlorate (d 5PyH)ClO4 (C5D5NHClO4) are studied by means of neutron diffraction in ambient conditions, X-ray diffraction at high pressures up to 3.5 GPa in the temperature range 297–420 K, and Raman spectroscopy at high pressures up to 5.7 GPa. Deuterated pyridinium perchlorate at ambient conditions has rhombohedral structure with the R3m symmetry (paraelectric phase I). Over the pressure range of 0.5–1.2 GPa, the phase II with monoclinic symmetry Cm exists. At pressure P ~ 1.2 GPa, the phase transition to monoclinic phase III with the Pm symmetry is observed at ambient temperature. The lattice parameters, unit cell volume, and frequencies of internal vibrational modes as functions of pressure are obtained for different phases of deuterated pyridinium perchlorate. The P-T phase diagram of (d 5PyH)ClO4 over the extended pressure and temperature range is discussed.  相似文献   

7.
High-precision studies of the volume and the electrical resistivity of g-As2Te3 glasses at a high hydrostatic pressure up to 8.5 GPa at room temperature are performed. The glasses exhibit elastic behavior in compression only at a pressure up to 1 GPa, and a diffuse structural transformation and inelastic density relaxation (logarithmic in time) begin at higher pressures. When the pressure increases further, the relaxation rate passes through a sharp maximum at 2.5 GPa, which is accompanied by softening the relaxing bulk modulus, and then decreases, being noticeable up to the maximum pressure. When pressure is relieved, an unusual inflection point is observed in the baric dependence of the bulk modulus near 4 GPa. The polyamorphic transformation is only partly reversible and the residual densification after pressure release is 2%. In compression, the electrical resistivity of the g-As2Te3 glasses decreases exponentially with increasing pressure (at a pressure up to 2 GPa); then, it decreases faster by almost three orders of magnitude in the pressure range 2–3.5 GPa. At a pressure of 5 GPa, the electrical resistivity reaches 10–3 Ω cm, which is characteristic of a metallic state; this resistivity continues to decrease with increasing pressure and reaches 1.7 × 10–4 Ω cm at 8.1 GPa. The reverse metal–semiconductor transition occurs at a pressure of 3 GPa when pressure is relieved. When the pressure is decreased to atmospheric pressure, the electrical resistivity of the glasses is below the initial pressure by two–three orders of magnitude. Under normal conditions, both the volume and the electrical resistivity relax to quasi-equilibrium values in several months. Comparative structural and Raman spectroscopy investigations demonstrate that the glasses subjected to high pressure have the maximum chemical order. The glasses with a higher order have a lower electrical resistivity. The polyamorphism in the As2Te3 glasses is caused by both structural changes and chemical ordering. The g-As2Te3 compound is the first example of glasses, where the reversible metallization under pressure has been studied under hydrostatic conditions.  相似文献   

8.
Electrical conductivity, Hall effect and magnetoresistance of In2O3:Sn thin films deposited on a glass substrates at different temperatures and oxygen pressures, have been investigated in the temperature range 4.2–300 K. The observed temperature dependences of resistivity for films deposited at 230 °C as well as at nominally room temperatures were typical for metallic transport of electrons except temperature dependence of resistivity of the In2O3:Sn film deposited in the oxygen deficient atmosphere. The electrical measurements were accompanied by AFM and SEM studies of structural properties, as well as by XPS analysis. It is established that changes of morphology and crystallinity of ITO films modify the low-temperature behavior of resistivity, which still remains typical for metallic transport. This is not the case for the oxygen deficient ITO layer. XPS analysis shows that grown in situ oxygen deficient ITO films have enhanced DOS between the Fermi level and the valence band edge. The extra localized states behave as acceptors leading to a compensation of n-type ITO. That can explain lower n-type conductivity in this material crossing over to a Mott-type hopping at low temperatures. Results for the low temperature measurements of stoichiometric ITO layers indicate that they do not show any trace of metal-to-insulator transition even at 4.2 K. We conclude that, although ITO is considered as a highly doped wide-band gap semiconductor, its low-temperature properties are very different from those of conventional highly doped semiconductors.  相似文献   

9.
Summary Most previous studies of magnetism in various compounds under extreme conditions have been conducted over a wide pressure range at room temperature or over a wide range of cryogenic temperatures at pressures below 20 GPa (200 kbar). We present some of the most recent studies of magnetism over an extended range of temperatures and pressures far beyond 20 GPa,i.e. in regions of pressure-temperature (P-T) space where magnetism has been largely unexplored. Recent techniques have permitted investigations of magnetism in selected 3d transition metal compounds in regions ofP-T where physical properties may be drastically modified; related effects have often been seen in selected doping studies at ambient pressures. We present57Fe and129I M?ssbauer isotope studies covering the range 300–4 K to sub-megabar pressures in compounds such as Sr2FeO4, LaFeO3 and FeI2, representative of a broad class of 3d transition metal compounds. At ambient pressure the electronic structure of the transition metal atom in these antiferromagnetic insulators extends from 3d 4 to 3d 6 and has a distinct influence on the pressure evolution of their magnetic properties. M?ssbauer studies of these compounds are considered in conjunction with available structural and electrical transport data at pressure. Paper presented at ICAME-95, Rimini, 10–16 September 1995.  相似文献   

10.
The magnetic and spectral properties of the paramagnetic phase of CoO at ambient and high pressures have been calculated within the LDA+DMFT method combining local density approximation (LDA) with dynamical mean-field theory (DMFT). From our results CoO at ambient pressure is a charge transfer insulator in the high-spin t 2g 5 e g 2 configuration. The energy gap is continuously decreased, and finally a transition into metallic state occurs with the increase in pressure that is consistent with experimental behavior of electrical resistivity. Notably, the metal-insulator transition in CoO is found to be accompanied by the high-spin to low-spin (HS-LS) transition in agreement with XES data. The metal-insulator transition is orbital selective in the t 2g states of cobalt only, whereas the e g states become metallic after the spin transition at higher pressures.  相似文献   

11.
The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along ГX for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.  相似文献   

12.
The amorphous to crystalline transformation in the ferromagnetic metallic glass Fe80B20 has been studied up to 30 kbar pressure and 1000K. A previous study at ambient pressure revealed no change in thermoelectric power (TEP) at the crystallization temperature (Tx) while the resistivity showed a sudden decrease at the same temperature. The present experimental results show a distinct anomaly in TEP at Tx even at ambient pressure. This anomaly gets enhanced under pressure.  相似文献   

13.
Giant magnetoresistance in Ce-doped manganite systems   总被引:2,自引:0,他引:2  
The fascinating properties like giant magnetoresistance (GMR) effect, metal-insulator transition, charge ordering phenomenon etc. have made the divalent ion doped RMnO3 (R = rare-earth elements) an attractive system for investigation. Resistivity of these compounds shows a peak near the ferromagnetic transition temperature (T c ). The application of magnetic field inhibits the spin-disorder scattering and the resistivity decreases drastically. Keeping electrondoped superconductor Nd2?x Ce x CuO4 in mind we have doped RMnO3 (R = La, Pr, Nd) with tetravalent Ce ion. These compounds are very susceptible to the annealing treatment and belong to the orthorhombic perovskite phase. They show a very high value of resistivity at the peak and under the magnetic field the GMR effect is observed. For La0.7Ce0.3MnO3 and Pr0.7Ce0.3MnO3 the magnetoresistance ratio reaches about 54% and 82.5% respectively at 7.7 T. With the increase of the temperature the magnetic state changes from ferromagnetic to paramagnetic regime. This magnetic transition is not very sharp and the resistivity peak appears at a temperature higher than T c .  相似文献   

14.
The La1.32Sr1.68Mn2O7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (TC) and a metal-insulator transition (TMI) at 118 K in the ambient pressure. The applied pressure shifts the TMI to higher temperature values and induces a second metal-insulator transition (T2MI) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at TC. When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.  相似文献   

15.
Pyrite-structured Co0.2Fe0.8S2 nano wires with aspect ratio 45:1, synthesized using solution colloid method were studied under high pressure up to 8 GPa using 57Fe Mössbauer spectroscopy (using diamond anvil cell) and electrical resistivity (using tungsten carbide cell) techniques. Room temperature S K-edge XANES studies at INFN-LNF synchrotron beam line signified the changes in the electronic structure owing to Co substitution. Magnetic measurements at 5 K demonstrated disordered ferromagnetic behavior similar to Griffith phase. The value of isomer shift identified Fe in divalent, low spin state corresponding to pyrite structure. Higher value of quadrupole splitting observed at ambient condition was due to large lattice strain and electric field gradient generated by large surface to volume ratio of the nano size of the system. With applied pressure, the value followed the expected trend of increase up to 4.3 GPa, then to decrease till 6.4 GPa. Such change in the trend suggested a phase transition. On decompression to ambient pressure, the system seemed to retain high pressure phase and nano structure. The pressure coefficient of electrical resistivity varying from −0.0454 to −0.166 Ω-cm/GPa across the transition pressure of ~4.5 GPa was sluggish suggesting second order phase transition. The pressure-dependent variations by Mössbauer parameters and electrical resistivity showed identical result. This is the first report of pressure effect on nano sized Co0.2Fe0.8S2. Effect of particle size on transition pressure could not be evaluated due to lack of available reports on bulk system.  相似文献   

16.
Single crystals of underdoped Ba(Fe1−xCox)2As2 were detwinned by applying uniaxial pressure. The anisotropic in-plane resistivity was measured using the Montgomery method without releasing pressure. The resistivity along the a-axis shows metallic behavior down to 5 K, while the resistivity along the b-axis shows an insulator-like behavior in some temperature range. Annealing the sample radically reduces the residual resistivity for x=0, and at the same time the anisotropy becomes much smaller at low temperatures.  相似文献   

17.
The high pressure structural phase transition in the alloy series Pb1 ? xSnxTe has been investigated using resistivity and Hall coefficient measurements. With increasing of tin content the critical pressure decreases linearly and the phase transition becomes less drastic. The anomalous behavior of the resistivity in the phase transition region is explained by band structure changes. It is suggested that the high pressure phase transition in Pb1 ? xSnxTe is a metallic-covalent transition.  相似文献   

18.
We report the structural and transport properties of NdNiO3 thin films prepared via pulsed laser deposition over various substrates. The films were well textured and c-axis oriented with good crystalline properties. The electrical resistivity of the films undergoes a metal-insulator transition, depending on the deposition process. Well-defined first order metal-insulator phase transition (TMI) was observed in the best quality films without high pressure processing. Various growth conditions such as substrate temperature, oxygen pressure and thickness were varied to see their influence on TMI. Deposition temperature was found to have a great impact on the electrical and structural properties of these films. Further the films deposited on LaAlO3 substrate were found to be highly oriented with uniform grain size as observed from X-ray diffraction and atomic force microscopy, whereas those on Si substrate were polycrystalline, dense and randomly oriented.  相似文献   

19.
The transport properties of half-metallic ferromagnetic Heusler alloys Fe2MeAl (where Me = Ti, V, Cr, Mn, Fe, and Ni are 3d transition elements) have been measured in the temperature range of 4–900 K. The specific features in the behavior of the electrical resistivity have been considered in terms of the two-current conduction model, which takes into account the presence of an energy gap in the electron spectrum of the alloys near the Fermi level.  相似文献   

20.
The temperature and magnetic-field dependences of the heat capacity, thermal conductivity, thermopower, and electrical resistivity of the Sm0.55Sr0.45MnO3.02 ceramic material are studied in the temperature range 77–300 K and in magnetic fields up to 26 kOe. It is revealed that the quantities under investigation exhibit anomalous behavior due to a magnetic phase transition at the Curie temperature TC. An increase in the magnetic field strength H leads to an increase in the Curie temperature TC and a jump in the heat capacity ΔCp at TC. The temperature dependences of the measured quantities are characterized by hystereses that are considerably suppressed in a magnetic field of 26 kOe and depend neither on the thermocycling range nor on the rate of change in the temperature. The thermal conductivity K at temperatures above TC shows unusual behavior for crystalline solids (dK/dT>0) and, upon the transition to a ferromagnetic state, drastically increases as a result of a decrease in the phonon scattering by Jahn-Teller distortions. It is demonstrated that the hystereses of the studied properties of the Sm0.55Sr0.45MnO3.02 manganite are caused by a jumpwise change in the critical temperature due to variations in the lattice parameters upon the magnetic phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号