首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It is commonly assumed that the burning of ammonium nitrate–aluminum mixtures is much less prone to undergo a transition to explosion and detonation than similar mixtures based on ammonium perchlorate. However, this conclusion has been made for mixtures based on commercial-grade ammonium nitrate with large particles. In this study, the combustion of fine loose-packed mixtures of ammonium nitrate and aluminum in a closed-volume bomb has been examined. It has been shown that fine mixtures (ammonium nitrate with a particle size of less than 40 µm and an ASD-4 aluminum powder with spherical particles with a size of about 4 µm) undergo high-intensity combustion; in experiments with a stoichiometric mixture, explosions are observed. The explosions occur in the initial phase of convective combustion and lead to abrupt pressure pulsations with an amplitude of a few kilobars and to the destruction of the cup in which the sample is placed. The dynamics of development of the explosion has been analyzed in detail using numerical simulation. According to the results of experiments with varied parameters—the degree of dispersion of the ammonium nitrate powders, the aluminum content in the mixture, the length and diameter of the charge, and the level of pressure generated by the combustion of the igniter,—threshold conditions have been determined to separate the following modes: the absence of ignition, layer-by-layer combustion, or convective combustion with a transition into an explosion in experiments with a stoichiometric mixture.  相似文献   

2.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对环氧丙烷-空气两相流云雾及环氧丙烷-铝粉-空气三相流云雾的爆燃转爆轰(DDT)过程进行了实验研究。对弱点火条件下多相混和物DDT过程的不同阶段特征进行了分析,对比研究了不同浓度时混和物的燃爆情况。结果表明:浓度为513 g/m3的环氧丙烷-空气混和物及浓度为237和643 g/m3的环氧丙烷-铝粉-空气混和物均能在管道中完成爆燃向爆轰的转变,进入自持爆轰阶段,其胞格尺寸分别为0.28和0.50 m。  相似文献   

3.
The reflection of a CJ detonation from a perforated plate is used to generate high speed deflagrations downstream in order to investigate the critical conditions that lead to the onset of detonation. Different perforated plates were used to control the turbulence in the downstream deflagration waves. Streak Schlieren photography, ionization probes and pressure transducers are used to monitor the flow field and the transition to detonation. Stoichiometric mixtures of acetylene–oxygen and propane–oxygen were tested at low initial pressures. In some cases, acetylene–oxygen was diluted with 80% argon in order to render the mixture more “stable” (i.e., more regular detonation cell structure). The results show that prior to successful detonation initiation, a deflagration is formed that propagates at about half the CJ detonation velocity of the mixture. This “critical” deflagration (which propagates at a relatively constant velocity for a certain duration prior to the onset of detonation) is comprised of a leading shock wave followed by an extended turbulent reaction zone. The critical deflagration speed is not dependent on the turbulence characteristics of the perforated plate but rather on the energetics of the mixture like a CJ detonation (i.e., the deflagration front is driven by the expansion of the combustion products). Hence, the critical deflagration is identified as a CJ deflagration. The high intensity turbulence that is required to sustain its propagation is maintained via chemical instabilities in the reaction zone due to the coupling of pressure fluctuations with the energy release. Therefore, in “unstable” mixtures, critical deflagrations can be supported for long durations, whereas in “stable” mixtures, deflagrations decay as the initial plate generated turbulence decays. The eventual onset of detonation is postulated to be a result of the amplification of pressure waves (i.e., turbulence) that leads to the formation of local explosion centers via the SWACER mechanism during the pre-detonation period.  相似文献   

4.
The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.  相似文献   

5.
 在长为32.4 m、内径为0.199 m的大型长直水平管道中,对铝粉-空气两相流的燃烧转爆轰(DDT)过程及爆轰波结构进行了实验研究。对铝粉-空气混合物弱点火条件下DDT过程不同阶段的特征进行了分析,实验结果显示混合物经历了缓慢反应压缩阶段、压缩波加速冲击波形成阶段、冲击反应过渡阶段、冲击反应向过压爆轰过渡阶段和爆轰阶段,得到了混合物各阶段的DDT参数,由此进一步分析了DDT浓度的上、下限。在1.4 m爆轰测试段的4个截面的环向上各均匀安装8个传感器,对爆轰波结果进行测试,并对铝粉-空气混合物爆轰波的单头结构进行了分析。  相似文献   

6.
利用棱镜谱仪研究氢燃烧转变为爆轰的过程   总被引:4,自引:2,他引:2  
胡栋  王永国 《光学学报》1993,13(9):35-839
本文利用Polaroid高速感光底片在一次实验中成功地拍摄到氢燃烧转变为爆轰(DDT)的光谱;利用光电技术研究了氢燃烧转变为爆轰过程中OH基(0.3064μm,0.3428μm)的变化过程.研究表明:在氢燃烧转变为爆轰过程中OH基是逐渐增大的,出现爆轰时OH基出现明显增长;OH(0,0)辐射早于O_2(0,14)辐射,它说明O_2在链式反应中能量比较低,它只有和自由原子和自由基相互碰撞获取高的能量而被激发.  相似文献   

7.
Jian-Xin Nie 《中国物理 B》2022,31(4):44703-044703
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.  相似文献   

8.
Pressure gain combustion in the form of continuous detonations can provide a significant increase in the efficiency of a variety of propulsion and energy conversion devices. In this regard, rotating detonation engines (RDEs) that utilize an azimuthally-moving detonation wave in annular systems are increasingly seen as a viable approach to realizing pressure gain combustion. However, practical RDEs that employ non-premixed fuel and oxidizer injection need to minimize losses through a number of mechanisms, including turbulence-induced shock-front variations, incomplete fuel-air mixing, and premature deflagration. In this study, a canonical stratified detonation configuration is used to understand the impact of preburning on detonation efficiency. It was found that heat release ahead of the detonation wave leads to weaker shock fronts, delayed combustion of partially-oxidized fuel-air mixture, and non-compact heat release. Furthermore, large variations in wave speeds were observed, which is consistent with wave behavior in full-scale RDEs. Peak pressures in the compression region or near triple points were considerably lower than the theoretically-predicted values for ideal detonations. Analysis of the detonation structure indicates that this deflagration process is parasitic in nature, reducing the detonation efficiency but also leading to heat release far behind the wave that cannot directly strengthen the shock wave. This parasitic combustion leads to commensal combustion (heat release far downstream of the wave), indicating that it is the root cause of combustion efficiency losses.  相似文献   

9.
The specifics of the combustion of micron-sized flaky aluminum powder in mixtures with crystal-line hydrates over a wide pressure range at various mass ratios between aluminum and crystalline hydrate are studied. Limiting conditions of combustion of mixtures regarding the composition and pressure are determined. With use of a stoichiometric mixture of aluminum with sodium sulfate crystalline hydrate, the coupled combustion composite samples with additional oxidants, ammonium nitrate and potassium nitrate, and samples with spread oxidant is examined. It is established that the velocity of coupled combustion can significantly exceed the velocity of combustion of the base mixture. Limiting conditions for combustion of mixtures are determined.  相似文献   

10.
Auto-ignition, reaction front propagation, and detonation development are foundational events in combustion, and are relevant to the occurrence of engine knock. It is generally understood that different auto-ignition modes can be initiated by non-uniform initial temperatures, manifesting the transition from supersonic to subsonic combustion modes with increasing temperature gradients. In this work, we have investigated the auto-ignition and reaction front propagation of syngas/air mixtures initiated by wide-ranging temperature gradients, in both spherical and planar coordinates, and have identified a universal detonation response diagram with multiple, non-monotonic boundaries of auto-ignition modes under engine-relevant conditions. Specifically, it is shown that with increasing gradient steepness, in addition to the conventional three regimes of supersonic auto-ignition deflagration, detonation development, and subsonic auto-ignition deflagration, the reaction front propagation speed would first decrease dramatically and then increase, hence inducing additional detonation regimes. Consequently, two detonation peninsulas are identified, with the first corresponding to the well-established Bradley detonation peninsula and the second manifesting a broader detonation regime. Both detonation peninsulas depend on the hotspot size and they can connect together when the hotspot radius becomes sufficiently large. The transient auto-ignition processes and chemical-gas dynamic interactions agree with the typical characteristics of various auto-ignition modes. Finally, auto-ignition modes are summarized in the detonation diagram, in which the Bradley detonation peninsula is well reproduced and the new detonation peninsula is quantitatively determined. The present study demonstrates that auto-ignition modes are significantly affected by the non-monotonic behavior of reaction front propagation, and the use of actual propagation speed is necessary for steeper temperature gradients in order to determine more accurate dimensionless parameters.  相似文献   

11.
This work reports the experimental characterization of detonation initiation modes in a confined chamber in respect to the different types of reacting waves generated in various small-diameter ignition tubes. Depending on the length of the tube and mixtures composition, four types of reacting waves can be generated and utilized to initiate detonation in the main chamber, namely the over-driven detonation ignition wave, CJ detonation ignition wave, high-speed deflagration ignition wave and deflagration ignition wave. Based on the mechanisms of detonation initiation in the main chamber, four initiation modes can be observed: the direct initiation, the local explosion initiation, and the fast and slow deflagration-to-detonation transition (DDT) initiation. By comparing the detonation initiation positions and flame-tip velocities, the first two modes show appreciably shorter initiation distances compared to the DDT modes. The over-driven detonation ignition wave is shown to yield a high probability of direct initiation, while contrary to expectation, the high-speed deflagration ignition wave exhibits superior initiation performance compared to the CJ detonation ignition wave. It is illustrated that the energy decay through diffraction and the effect of precursor shock wave reflection on the wall of the rectangular chamber are viable factors responsible for this observation. The deflagration ignition wave is also shown to be able to rapidly initiate the detonation near the inlet of the chamber, albeit with a lower success rate.  相似文献   

12.
Investigations of detonation onset in pulverized fuel–air mixtures were carried out. Combustion and detonation processes in sprays differ greatly from that in homogeneous mixtures, because not only chemical reactions, but physical processes of combustible mixture formation take place within the combustion zone (droplets atomization and evaporation). The polydispersed character of mixture and non-uniformity of droplet spatial distribution strongly affects spray combustion and detonation onset. The present paper contains the results of theoretical and experimental investigations of detonation onset peculiarities in polydispersed non-uniform hydrocarbon–air mixtures.  相似文献   

13.
Experimental studies of the combustion of mixtures of micron-sized flaky aluminum powder with unthickened water in different conditions at atmospheric and high pressure in nitrogen and argon are performed. The density and composition of the mixture are varied. The regularities of the combustion have been established. A filtration wave of hot hydrogen ahead of the combustion front in samples with high porosity has been revealed. For the combustion under a nitrogen atmosphere, the pressure exponent in the burning rate law is close to 0.47 in a wide range of pressures. For the combustion under an argon atmosphere at pressures above 50 atm, the pressure exponent becomes zero or negative. Aluminum powder is demonstrated to be able to burn under conditions of a separated charge, where the fuel (aluminum) and oxidizer (water) are separated by a thin partition or brought in direct contact. The fast convective burning of aluminum-water mixtures in a semiclosed volume is discovered.  相似文献   

14.
建立三维的铝粉-空气两相爆轰计算模型,采用时-空守恒元解元(CE/SE)方法求解,并开发了悬浮铝粉尘爆轰的三维数值模拟程序.基于消息传递接口(MPI)技术实现了程序的并行化设计.通过对激波管问题以及爆轰管中铝粉-空气两相爆轰实验的模拟验证程序的可靠性.对拐角空间中左侧浓度为368 g·m-3的铝粉-空气混合物两相爆轰及其在拐角空间右侧和下方空气域内形成的冲击波和温压效应开展数值模拟,获得复杂空间内爆轰波或冲击波的传播、反射以及绕射过程.结果表明:两相爆轰在离铝粉尘区域2 m远的空气域内产生的后效冲击波能达到2.66 MPa的固壁反射压力,火球燃烧范围会超出初始铝粉尘区域约0.8 m,并且造成初始铝粉尘区域附近1.5 m范围内空气的温度高达1 600 K.模拟程序可用于铝粉尘爆轰的后效研究,对工业安全及其防护具有指导意义.  相似文献   

15.
Numerical simulation of a methane-oxygen rotating detonation rocket engine   总被引:1,自引:0,他引:1  
The rotating detonation engine (RDE) is an important realization of pressure gain combustion for rocket applications. The RDE system is characterized by a highly unsteady flow field, with multiple reflected pressure waves following detonation and an entrainment of partially-burnt gases in the post-detonation region. While experimental efforts have provided macroscopic properties of RDE operation, limited accessibility for optical and flow-field diagnostic equipment constrain the understanding of mechanisms that lend to wave stability, controllability, and sustainability. To this end, high-fidelity numerical simulations of a methane-oxygen rotating detonation rocket engine (RDRE) with an impinging discrete injection scheme are performed to provide detailed insight into the detonation and mixing physics and anomalous behavior within the system. Two primary detonation waves reside at a standoff distance from the base of the channel, with peak detonation heat release at approximately 10 mm from the injection plane. The high plenum pressures and micro-nozzle injector geometry contribute to fairly stiff injectors that are minimally affected by the passing detonation wave. There is no large scale circulation observed in the reactant mixing region, and the fuel distribution is asymmetric with a rich mixture attached to the inner wall of the annulus. The detonation waves’ strengths spatially fluctuate, with large variations in local wave speed and flow compression. The flow field is characterized by parasitic combustion of the fresh reactant mixture as well as post-detonation deflagration of residual gases. By the exit plane of the RDRE, approximately 95.7% of the fuel has been consumed. In this work, a detailed statistical analysis of the interaction between mixing and detonation is presented. The results highlight the merit of high-fidelity numerical studies in investigating an RDRE system and the outcomes may be used to improve its performance.  相似文献   

16.
The results of studying deflagration-to-detonation transition (DDT) in hydrogen-methane (propane)-air in a detonation tube with uniformly spaced annular obstacles are presented. The effect of the scaling factor on the DDT was identified. The boundary between fast deflagration and detonation regimes was calculated using a criterion based on a comparison of the gasdynamic and chemical characteristic times for the ignition of the mixture behind the shock wave reflected from an obstacle.  相似文献   

17.
The acceleration of a flame after an additional energy input ahead of its front was simulated using numerical methods. The combustion of a hydrogen-air mixture in a semiopen channel was considered. The calculations were performed within the framework of a two-dimensional hydrodynamic model of premixed flames, with consideration given to heat transfer, multicomponent diffusion, and chemical kinetics. It was demonstrated that, when the interaction of the flame front with the near-wall boundary layer is taken into account, even a moderate energy input could substantially promote the development of the Landau-Darrieus instability and, possibly, deflagration to detonation transition.  相似文献   

18.
Numerical simulations are used to study the effect of the chemical composition of the combustible mixture on the development of the hydrodynamic instability of the flame front, its acceleration, and the possibility of transition to the detonation regime. The combustion of hydrogen-containing mixtures in confined spaces (channels) was considered. Calculations were performed within the framework of a two-dimensional hydrodynamic model for the combustion of premixed mixtures with account of viscosity, heat conduction, multicomponent diffusion, and chemical kinetics. It was demonstrated that the presence of an inert component and the deviation of the mixture composition from stoichiometry caused not only a quantitative but also a qualitative change in the character of burning of gaseous combustible mixtures.  相似文献   

19.
Nonideal regimes of deflagration and detonation of black powder   总被引:1,自引:0,他引:1  
The explosive and deflagration properties of black powder differ significantly from those of modern propellants and compositions based on ammonium nitrate or ammonium perchlorate. Possessing a high combustibility, black powder is capable of maintaining stable combustion at high velocities in various shells, be it steel shells or thin-walled plastic tubes, without experiencing deflagration-to-detonation transition. It is extremely difficult to detonate black powder, even using a powerful booster detonator. The results of numerical simulations of a number of key experiments on the convective combustion and shock initiation of black powder described in the literature are presented. The calculations were performed within the framework of a model developed previously for describing the convective combustion of granulated pyroxylin powders, with small modifications being introduced to allow for the specific properties of black powder. The thermophysical properties of the products of combustion and detonation and the parameters of the equation of state of black powder were determined from thermodynamic calculations. The calculation results were found to be in close agreement with the experimental data. The simulation results were used to analyze the regularities of the wave processes in the system and their relation to the properties of black powder and the experimental conditions. It was demonstrated that the effects observed could be explained by a weak dependence of the burning rate of black powder on the pressure.  相似文献   

20.
Effects of tube diameter and equivalence ratio on reaction front propagations of ethylene/oxygen mixtures in capillary tubes were experimentally analyzed using high speed cinematography. The inner diameters of the tubes investigated were 0.5, 1, 2 and 3 mm. The flame was ignited at the center of the 1.5 m long smooth tube under ambient pressure and temperature before propagated towards the exits in the opposite directions. A total of five reaction propagation scenarios, including deflagration-to-detonation transition followed by steady detonation wave transmission (DDT/C–J detonation), oscillating flame, steady deflagration, galloping detonation and quenching flame, were identified. DDT/C–J detonation mode was observed for all tubes for equivalence ratios in the vicinity of stoichiometry. The velocity for the steady detonation wave propagation was approximately Chapman–Jouguet velocity for 1, 2, and 3 mm I.D. tubes; however, a velocity deficit of 5% was found for the case in 0.5 mm I.D. tube. For leaner mixtures, an oscillating flame mode was found for tubes with diameters of 1 to 3 mm, and the reaction front travelled in a steady deflagrative flame mode with velocities around 2–3 m/s when the mixture equivalence ratio becomes even leaner. Galloping detonation wave propagation was the dominant mode for the fuel lean regime in the 0.5 mm I.D. tube. For rich mixtures beyond the detonation limits, a fast flame followed by flame quenching was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号