首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To complete the systematic study on hyperfine interactions of light impurities in ferromagnetic Ni, the short-lived beta-emitter8Li was implanted in a thin polycrystal Ni foil. One of the final sites of8Li in Ni was found by means of the beta-NMR technique andits hyperfine field was determined to be -3.65(3) kOe. Simultaneously, the spin lattice relaxation time of8Li at the site in Ni was found to be 1.6(4) s. Based on the comparison between these values and theoretical predictions recently made by a first principle calculation, the probable site of8Li in Ni is implied to be an octahedral interstitial site.  相似文献   

2.
The paper describes the results of an experimental study of the 35Cl and 14N nuclear quadrupole resonance in composite and porous materials, the influence of the environment and the crystallite size of powder on the nuclear quadrupole resonance line widths, as well as on the spin–spin and spin–lattice relaxation times. It is established that the spin–lattice relaxation time has a unimodal distribution, and the spin–spin relaxation time—bimodal distributions for all the investigated samples. The idealized distribution function of the relaxation times is obtained on the assumption that the concentration of inhomogeneities and relaxativity decreases with an increasing distance from the surface into the interior of the crystallite exponentially. It is shown that the model with the spin diffusion explains the shortening of the decay signal with decreasing grain size, but this is not confirmed by the experimental distribution of relaxation times obtained by means of the inverse Laplace transformation.  相似文献   

3.
《Solid State Ionics》2006,177(35-36):3063-3068
Solid-state 17O NMR measurements between room temperature and 973 K were performed for the first time on 17O-enriched yttria-stabilized zirconia samples. Spin–lattice relaxation is found to exhibit a strong temperature dependence which can be traced back to motional displacements of the oxygen ions and which is almost unaffected by the actual sample constitution. Analysis of the spin–lattice relaxation data provides the motional correlation times. The derived activation energies are relatively low with values of about 30 kJ/mol. In addition, large temperature effects are observed for the 17O NMR line widths, and thus for spin–spin relaxation, which are again attributed to the oxygen ion mobility. In this case, the underlying oxygen motions, however, occur on a length-scale which is different from that probed by spin–lattice relaxation.  相似文献   

4.
The temperature dependence of the 19F NMR linewidth ΔH in KCoF3 has been measured over the entire paramagnetic solid state region. The dramatic decrease in the hyperfine-broadened, exchange narrowed ΔH that occurs above 200 K is interpreted as arising from fast Co2+ single-ion, spin-lattice relaxation. A model theory of the temperature dependence of ΔH is given which incorporates the interplay of exchange and spin lattice relaxation effects on the decay of the spin autocorrelation function.  相似文献   

5.
The linewidth δH and the spin-spin relaxation time T 2 for Gd3+, Mn2+, and Cr3+ ions in aqueous, water-glycerol, and water-poly(ethylene glycol) solutions at paramagnetic ion concentrations providing the dipole-dipole mechanism of spin relaxation are measured using two independent methods, namely, electron paramagnetic resonance (EPR) and nonresonance paramagnetic absorption in parallel fields. Analysis of the experimental results indicates a gradual crossover from pure liquid-state (diffusion) to quasi-solid-state (rigid lattice) spin relaxation. It is demonstrated that the limiting cases are adequately described by standard, universally accepted formulas for dipole-dipole interactions in the liquid-state (the correlation time of translational motion satisfies the condition τ c 2) and solid-state (τ c 2) approximations. A complete theoretical treatment of the experimental dependences (including the observed gradual crossover of spin relaxation) is performed in the framework of the non-Markovian theory of spin relaxation in disordered media, which is proposed by one of the authors. Within this approach, the collective memory effects for spin and molecular (lattice) variables are taken into account using the first-order and second-order memory functions for spin-spin and spin-lattice interactions. A correlation between the spin magnitude and the temperature-viscosity conditions corresponding to the crossover to non-Markovian relaxation is revealed, and the situations in which structural transformations occurring in the solutions favor the crossover to solid-state spin relaxation are analyzed.  相似文献   

6.
The frequency-field and orientation dependences of the electron paramagnetic resonance (EPR) spectra are measured for impurity Tm3+ ions in yttrium orthosilicate (Y2SiO5) single crystals by stationary EPR spectroscopy in the frequency range of 50–100 GHz at 4.2 K. The position of the impurity ion in the crystal lattice and its magnetic characteristics are determined. The temperature dependences of the spin–lattice and phase relaxation times are measured by pulse EPR methods in the temperature range of 5–15 K and the high efficiency of the direct single-phonon mechanism of spin–lattice relaxation is established. This greatly shortens the spin–lattice relaxation time at low temperatures and makes impurity Tm3+ ions in Y2SiO5 a promising basis for the implementation of high-speed quantum memory based on rare-earth ions in dielectric crystals.  相似文献   

7.
Hole spin relaxation in an isolated Ge quantum dot due to interaction with phonons is investigated. Spin relaxation in this case occurs through the mechanism of the modulation of the spin-orbit interaction by lattice vibrations. According to the calculations performed, the spin relaxation time due to direct single-phonon processes for the hole ground state equals 1.4 ms in the magnetic field H = 1 T at the temperature T = 4 K. The dependence of the relaxation time on the magnetic field is described by the power function H?5. At higher temperatures, a substantial contribution to spin relaxation is made by two-phonon (Raman) processes. Because of this, the spin relaxation time decreases to nanoseconds as the temperature is raised to T = 20 K. Analysis of transition probabilities shows that the third and twelfth excited hole states, which are intermediate in two-step relaxation processes, play the main part in Raman processes.  相似文献   

8.
Pulsed NMR spin lattice relaxation measurements on 13C and 1H nuclei in undoped trans-polyacetylene have been carried out between 6 and 295 K. The results indicate that the spin lattice relaxation is due to equilibrium fluctuations of the orientational order parameter for the protons while the carbon relaxation can be attributed to their coupling to paramagnetic impurities. In this temperature range no contribution of solitons has been detected in the relaxation mechanisms.  相似文献   

9.
We demonstrate that molecular dynamics simulations are a versatile tool to ascertain the interpretation of spin–lattice relaxation data. For 1H, our simulation approach allows us to separate and to compare intra- and inter-molecular contributions to spin–lattice relaxation dispersions. Dealing with the important example of polymer melts, we show that the intramolecular parts of 1H spectral densities and correlation functions are governed by rotational motion, while their inter-molecular counterparts provide access to translational motion, in particular, to mean-squared displacements and self-diffusion coefficients. Exploiting that the full microscopic information is available from molecular dynamics simulations, we determine the range of validity of experimental approaches, which often assume Gaussian dynamics, and we provide guidelines for the determination of free parameters required in experimental analyses. For 2H, we examine the traditional methodology to extract correlation times of complex dynamics from relaxation data. Furthermore, based on knowledge from our computational study, it is shown that measurement of 2H spin–lattice relaxation dispersions allows one to disentangle the intra- and inter-molecular contributions to the corresponding 1H data in experimental work. Altogether, our simulation results yield a solid basis for future 1H and 2H spin–lattice relaxation analysis.  相似文献   

10.
Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties. Spin lattice relaxation times, spin packet line widths, nuclear hyperfine splitting, and overall lineshapes were characterized for six low molecular weight nitroxides in dilute deoxygenated aqueous solution at X-band. The nitroxides included 6-member, unsaturated 5-member, or saturated 5-member rings, most of which were isotopically labeled. The spectra are near the fast tumbling limit with T1T2 in the range of 0.50–1.1 μs at ambient temperature. Both spin–lattice relaxation T1 and spin–spin relaxation T2 are longer for 15N- than for 14N-nitroxides. The dominant contributions to T1 are modulation of nitrogen hyperfine anisotropy and spin rotation. Dependence of T1 on nitrogen nuclear spin state mI was observed for both 14N and 15N. Unresolved hydrogen/deuterium hyperfine couplings dominate overall line widths. Lineshapes were simulated by including all nuclear hyperfine couplings and spin packet line widths that agreed with values obtained by electron spin echo. Line widths and relaxation times are predicted to be about the same at 250 MHz as at X-band.  相似文献   

11.
The Sc2SiO5 single crystals doped with 0.001 at.% of the 143Nd3+ ion were studied by continuous-wave and pulse electron paramagnetic resonance methods. The g-tensors and hyperfine structure tensors for two magnetically non-equivalent Nd ions were obtained. The spin–spin and spin–lattice relaxation times were measured at 9.82 GHz in the temperature range from 4 to 10 K. It was established that three relaxation processes contribute to the spin–lattice relaxation processes. There are one-phonon spin–phonon interaction, two-phonon Raman interaction and two-phonon Orbach–Aminov relaxation processes. It was established that spin–spin relaxation time is of the same magnitude for neodymium ion doped in Sc2SiO5 and in Y2SiO5.  相似文献   

12.
The mechanism of spin‐lattice relaxation has been investigated in the “picket‐fence” porphyrin [Fe(CH3COO)(TPpivP)]-, a high‐spin iron(II) complex with unusual large quadrupole splitting of 4.25 mm s-1, by conventional Mössbauer spectroscopy as well as by nuclear resonant forward scattering (NFS). Superparamagnetism with a blocking temperature of about 8 K is observable by both methods in the spectra of bacterioferritin from S. olivaceus. From these two examples general conclusions about the merits of both methods can be drawn.  相似文献   

13.
Covalently linked porphyrin–quinone model systems for photosynthetic electron transfer were examined by using time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (0.34T/9.5GHz, X-band) and high field and frequency (3.4T/95GHz, W-band). The paramagnetic transients studied were the light-induced spin-correlated radical pair states of the donor–acceptor complex in polar solvents below the melting point and in the soft glass phase of a liquid crystal. It is shown that the systems form strongly exchange-coupled radical pairs, whose TREPR lineshapes are determined mainly by fast electron recombination together with both spin–lattice relaxation and modulation of the exchange interaction. Below the melting point the spin–lattice relaxation rate naturally slows down, but that of the spin on the quinone site is still of the order of 106 s-1. Most probably this is due to contributions from spin–rotation interaction, and dependent on the molecular orientation with respect to the magnetic field. This relaxation anisotropy is related to anisotropic motion of the quinone site in the solvent cage. The results allow conclusions to be drawn concerning the molecular dynamics and flexibility of the systems. To yield long-lived radical pair states that would mimic photosynthetic electron transfer, the two mechanisms described, modulation of exchange and spin–rotation interactions, have to be suppressed by reducing the molecular flexibility of the complex.  相似文献   

14.
The Mori–Zwanzig projection operator technique was employed to derive the effective Hamiltonian for spin-segment coupling. The fluctuations of this operator are responsible for spin–lattice relaxation in polymer chains. In detail, dipolar interaction of spins is rigorously analyzed by components representing fluctuations of the Kuhn segment end-to-end vectors and local fluctuations on a length scale shorter than the root mean square Kuhn segment length. The former correspond to the usual coarse-grain picture of polymer chain mode theories. It is shown that these non-local chain modes dominate proton spin–lattice relaxation dispersion of flexible polymers at frequencies up to about 108 Hz. A corresponding evaluation of experimental data for polybutadiene melts is presented.  相似文献   

15.
《Current Applied Physics》2001,1(2-3):149-155
We report on nuclear magnetic resonance on single wall carbon nanotubes. Depending on the chemical preparation the electronic and dynamical properties of carbon nanotubes are presented and discussed. From a room temperature study of the spin lattice relaxation of carbon nanotubes prepared with various catalysts we clearly identified two components. In agreement with previous NMR studies and theoretical predictions, one-third of the intensity of the signal is found with a short relaxation time (about 5 s) attributed to metallic nanobutes while the rest of the signal presents a relaxation time of about 90 s corresponding to semiconducting nanotubes. In the case of oxidized or cut nanotubes only one relaxation time is observed with characteristics similar to the slow component. The disappearance of the fast relaxing component is associated with the absence of metallic nanotubes damaged by the chemical or mechanical treatments. In this case, the T dependence of the spin lattice relaxation reveals the effect of thermally activated small amplitude motions (twistons) of the nanotube in ropes. If diffusion of twistons might induce movement of 13C sites and local magnetic field fluctuations, orientational order could appear below the transition temperature of 170 K. In the last part, we present the theoretical predictions of chemical shift tensor in carbon nanotubes.  相似文献   

16.
We have measured the nuclear spin relaxation rate for nuclear spin polarized7Li atoms adsorbed on a hot O-W(110) surface and found that it increases as the magnetic field strength approaches zero. The trend of the nuclear spin relaxation rate generally agrees with a logarithmic divergence, a consequence of the correlation function for two-dimensional diffusion. In principle, such experiments yield information on absolute values of diffusion rates for the adsorbed atoms. Supported in part by a Travel Grant from the North Atlantic Treaty Organization.  相似文献   

17.
We report a quantitative measure of the nonexponential 1H spin–lattice relaxation resulting from methyl group (CH3) rotation in six polycrystalline van der Waals solids. We briefly review the subject in general to put the report in context. We then summarize several significant issues to consider when reporting 1H or 19F spin–lattice relaxation measurements when the relaxation is resulting from the rotation of a CH3 or CF3 group in a molecular solid.  相似文献   

18.
Temperature dependencies of 27Al and 23Na nuclear magnetic resonance spectra and spin–lattice relaxations in mordenite have been studied in static and magic angle spinning regimes. Our data show that the spin–lattice relaxations of the 23Na and 27Al nuclei are mainly governed by interaction of nuclear quadrupole moments with electric field gradients of the crystal, modulated by translational motion of water molecules in the mordenite channels. At temperatures below 200 K, the dipolar interaction of nuclear spins with paramagnetic impurities becomes an important relaxation mechanism of the 23Na and 27Al nuclei.  相似文献   

19.
Using the thermal cycling method, the nuclear spin lattice relaxation of186ReFe and182TaFe has been measured in polarizing fields of 0.1 to 1.2 T. The results for the relaxation constants in the high-field limit are 87(2) and 470(10) ms K, respectively. The relaxation rates are about a factor of three larger than expected from ab initio calculations. It is proposed to interprete this discrepancy as proof for a significant spin wave contribution to the relaxation.  相似文献   

20.
Nojiri  Y.  Ishiga  K.  Onishi  T.  Sasaki  M.  Ohsumi  F.  Kawa  T.  Mihara  M.  Fukuda  M.  Matsuta  K.  Minamisono  T. 《Hyperfine Interactions》1999,120(1-8):415-418
Hyperfine interactions of 8Li impurity nucleus imbedded in ferromagnetic Ni metal were studied using the β-NMR technique. Two kinds of hyperfine fields B82 were found, corresponding to two different final sites of Li atoms in the Ni lattice. The nuclear spin-lattice relaxation times T1 of 8Li in Ni were also determined for each field. Temperature dependencies of B82 and T1 were observed to deduce these values at T=0 K that can be compared with those calculated recently by Akai et al. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号