首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The luminescence of Ce3+ in perovskite (ABO3) hosts with nd0 B-site cations, specifically Ca(Hf,Zr)O3 and (La,Gd)ScO3, is investigated in this report. The energy position of the Ce3+ excitation and emission bands in these perovskites is compared to those of typical Al3+ perovskites; we find a Ce3+ 5d1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al3+ perovskites. It is also shown that Ce3+ luminescence quenching is due to Ce3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce3+ luminescence quenching, the energy position of the Ce3+ 5d1 excited state with respect to the host conduction band, and the host composition.  相似文献   

2.
Carbazole-based Schiff base chemosensor was synthesized in one-pot synthesis using 2-hydroxy-1-naphtaldehyde for fluorescent sensing of Al3+ ions. Characterization of the ligand (L) was revealed through spectroscopic and physicochemical techniques. The fluorescence emission responses of L to various metal ions and anions were investigated. The chelation was studied by UV–vis, 1H NMR, LC-MS/MS, fluorescence titration and Job’s plot analysis. Bathochromic shift resulted from charge transfer from L to electrophilic Al3+ ion was observed in the chelation of L with Al3+. The potentiality of L to be a distinguished probe to detect Al3+ ions was due to a chelation enhanced fluorescence (CHEF) effect, concomitant with noticeable fluorescent enhancement. A significant fluorescence enhancement at 533 nm was observed in ethanol–water (1:1, v/v) solution upon addition of Al3+ along with a distinct color change from yellow to white. Non-fluorescent ligand exposed highly sensitive turn-on fluorescent sensor behavior for selectively sensing Al3+ ions via 1:1 (ligand:metal) stoichiometry. The ligand’s specificity in the existence of other tested metal ions and anions indicated no observation in color change. The ligand-Al3+ complex formation was reversible upon addition of chelating agent EDTA. The ligand interacted with Al3+ ions with an association constant of Ka = 5 × 104 M?1. The limit of detection (LOD) was found to be 2.59 × 10-7 M. The synthesized Schiff base could efficiently detect Al3+ ions as a fluorescent sensor.  相似文献   

3.
In this work, we synthesised and characterised three novel fluorescence macrocyclic sensors containing optically active dansyl groups. The studies for the interaction of the synthesised compounds with various mental ions (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Ba2+, Pb2+, Zn2+, Co2+, Cd2+, Hg2+, Ni2+, Cu2+, Mn2+, Cr3+, Al3+, Fe3+) were performed by fluorescence titration, Job’s plot, ESI-MS and DFT calculations. The results showed that the sensors 1a–1c displayed selective recognition for Cu2+ and Fe3+ ions and formed stoichiometry 1:1 complex through PET mechanism in DMSO/H2O solution (1:1, v/v, pH 7.4 of HEPES). The binding constant (K) and detection limit were calculated.  相似文献   

4.
A ratiometric fluorescent chemosensor 1 was developed for the detection of Al3+ in aqueous solution based on aggregation-induced emmision (AIE). The chemosensor showed the fluorescence of its aggregated state and Al3+-chelated soluble state in the absence and in the presence of Al3+, respectively, and resulted in a fluorescence ratio (I461/I537) response to Al3+ in neutral aqueous solution at a detection limit as low as 0.29 μmol L−1. The method was also highly selective to Al3+ over other physiological relevant metal ions investigated in this study. Taking advantage of its AIE characteristics, the chemosensor was successfully applied on test papers for simple and rapid detection of Al3+. Moreover, the application of 1 for the imaging of Al3+ in living cells by ratiometric fluorescence changes was also achieved.  相似文献   

5.
A Schiff base-type fluorescent probe (1) consist of 2-hydroxynaphthaldehyde and glutamide moieties has been designed and synthesized for detection Zn2+ and Al3+. The probe shows pH dependent dual-selectivity for Zn2+ and Al3+ in Tris-HCl buffer, viz. that can selectively recognized Zn2+ at pH 7.4 and Al3+ at pH 6.0, respectively. From Job's plots and MS data, the stoichiometric ratios of the probe with Zn2+ and Al3+ appeared to be 1:1 and 2:1, respectively. The probe can detect as low as 5.5 × 10−8 M−1 Zn2+ and 1.27 × 10−7 M−1 Al3+, whereas respective association constants are 4.27 × 104 M−1 and 3.50 × 109 M−1. Furthermore, it is also confirmed that the probe has good cell-permeability and could thus be used to selectively sense intracellular Zn2+ and Al3+ by bioimaging in different pH environment. Finally the probe has been used successfully for determination of the analytes in real drug samples.  相似文献   

6.
A new lawsone-based azo-dye 2-hydroxy-3-((pyridin-2-ylmethyl)diazenyl)naphthalene-1,4-dione (1) was synthesized and applied for sensing of metal ions. Receptor 1 showed selective fluorescent and colorimetric response for the detection of Cu2+ and Fe3+ over other tested metal ions. The fluorescence intensity of 1 was significantly quenched allowing detection of Fe3+ and Cu2+ down to 0.61 and 6.06 μM, respectively. The binding has been established by fluorescence spectroscopic method. Receptor 1 provided a 1?:?1 binding scaffold for recognition of Fe3+ and Cu2+ ions with the association constant of 3.33 × 106 and 3.33 × 105 M?1, respectively. The B3LYP/6-31G/LANL2DZ method was employed for the optimization of 1 and 1·Fe3+ and 1·Cu2+.  相似文献   

7.
A simple Schiff-base derivative with salicylaldehyde moieties as fluorescent probe 1 was reported by aggregation-induced emission (AIE) characterization for the detection of metal ions. Spectral analysis revealed that probe 1 was highly selective and sensitive to Al3+. The probe 1 was also subject to minimal interference from other common competitive metal ions. The detection limit of Al3+ was 0.4 μM, which is considerably lower than the World Health Organization standard (7.41 μM), and the acceptable level of Al3+ (1.85 μM) in drinking water. The Job's plot and the results of 1H-NMR and FT-IR analyses indicated that the binding stoichiometry ratio of probe 1 to Al3+ was 1:2. Probe 1 demonstrated a fluorescence-enhanced response upon binding with Al3+ based on AIE characterization. This response was due to the restricted molecular rotation and increased rigidity of the molecular assembly. Probe 1 exhibited good biocompatibility, and Al3+ was detected in live cells. Therefore, probe 1 is a promising fluorescence probe for Al3+ detection in the environment.  相似文献   

8.
The inclusion complex of etodolac (ETD) with β-CD was investigated by UV-visible and fluorescence spectroscopy. The chemosensory ability of ETD:β-CD complex for various metal cations was investigated thoroughly, and we found that the emission of the complex showed a drastic increase in the intensity for Ba2+. Competitive experiments of ETD:β-CD complex with Ba2+ showed that no significant variation was found in the fluorescence intensity of the ETD:β-CD/Ba2+ complex upon adding other cations, such as Na+, Ag+, Hg2+, Cd2+, Al3+, Cr3+, Fe3+, Se4+, and Ti4+. The linearity range, limit of detection (LOD), and limit of quantitation (LOQ) were determined from the selectivity and sensitivity studies.  相似文献   

9.
设计合成了一种基于2-羟基-1-萘甲醛和间苯二甲酰肼的简单高效的荧光探针L,其结构通过~1H NMR、~(13)C NMR和HRMS进行表征。在乙醇-水(1∶1)的体系中,L能够高选择性识别铝离子,表现出明显的荧光增强,并具有较低的检测限(5. 924×10~(-6)mol/L),二者结合比为1∶2。此外,原位生成的配合物L-2Al~(3+)可接力识别焦磷酸根(PPi),具有良好的选择性和灵敏度,检测限可达4. 756×10~(-5)mol/L。该荧光探针具有潜在的应用价值。  相似文献   

10.
A series of crown ethers carrying an anthracene group with nitrogen–sulfur donor atom, which differ in having three, four and five sulfur atoms in the macrocycle was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl-anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligands was investigated in acetonitrile–dichloromethane (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Al3+, Zn2+, Fe2+, Fe3+, Cu2+, Hg2+ and Pb2+ the results of which disclosed the complexation compositions and complex stability constants of the novel ligands with these cations. The monoazapentathia crown ether showed sensitivity for Al3+ with linear range and detection limit of 2.6 × 10−6 M–2.6 × 10−5 M and 8.1 × 10−7 M, respectively.  相似文献   

11.
12.
A simple Al3+ fluorescent chemosensor (1) based on diacylhydrazone has been designed and synthesized by the condensation reaction of 2-hydroxy naphthaldehyde and metaphthalic hydrazide. The chemosensor 1 displays a specific and sensitive response to Al3+ over other cations in DMSO solution. Upon the addition of DMSO solution of Al3+, the sensor 1 shows an immediate fluorescence ‘turn-on’ response and emitting strong blue emission with visible color change from colorless to green. The fluorescence quantum yield enhanced from 7.24% to 48.68%. Meanwhile, the fluorescence and UV absorption spectra detection limits of the chemosensor 1 for Al3+ were 2.0 × 10?7 M and 5.6 × 10?7 M respectively, indicating the high sensitivity of 1 to Al3+. Furthermore, test strips based on 1 were fabricated, which could be used as a convenient test kit for the detection of Al3+ and an efficient Al3+ controlled fluorescent security display materials.  相似文献   

13.
ABSTRACT

Perimedine labelled rhodamine dye 1 has been designed and synthesised. Metal ion binding studies of 1 have been performed in CH3CN/H2O (3:1, v/v, 10 mM Tris-HCl buffer, pH = 6.90). Compound 1 senses multiple metal ions such as Al3+, Fe3+ and Fe2+ by exhibiting turn on fluorescence and colour change (colourless to pink) under different experimental conditions. Concentration variation distinguishes Al3+ from Fe3+ ion. At low concentration (c = 1 x 10?4 M), only Al3+ ion can exhibit turn on fluorescence with sharp colour change. Sensing of Fe2+ ion through turn on fluorescence and colour change has been possible via in situ oxidation by following Fenton’s reaction.  相似文献   

14.
The kinetics of formation of AlSO 4 + has been investigated in mixtures of water and formamide. In contrast to similar measurements with BeSO4, the substitution of solvating formamide molecules by the sulfate ion cannot be observed on the aluminum cation. On the other hand, with Al3+ cations three well separated water substitution processes are observed, as compared to a single one only with Be2+. An explanation for this behavior and for the different pH dependence of the sulfate complex formation for Al3+ and Be2+ cations is suggested.  相似文献   

15.
The Er3+–Yb3+ codoped Al2O3 has been prepared by the sol–gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3 · 5H2O] and ytterbium nitrate [Yb(NO3)3 · 5H2O]. The phase structure, including only two crystalline types of doped Al2O3 phases, θ and γ, was obtained for the 1 mol% Er3+ and 5 mol% Yb3+ codoped Al2O3 at the sintering temperature of 1,273 K. By a 978 nm semiconductor laser diodes excitation, the visible up-conversion emissions centered at about 523, 545, and 660 nm were obtained. The temperature dependence of the green up-conversion emissions was studied over a wide temperature range of 300–825 K, and the reasonable agreement between the calculated temperature by the fluorescence intensity ratio (FIR) theory and the measured temperature proved that Er3+–Yb3+ codoped Al2O3 plays an important role in the application of high temperature sensor.  相似文献   

16.
The novel coumarin-based ‘turn-on’ fluorescent probe (E)-3-(2,5-dimethoxybenzylideneamino)-7-hydroxy-2H-chromen-2-one (MGM) was designed, synthesized, and characterized. This compound shows high selectivity for Cu+2, combined with a large fluorescence enhancement upon binding to Cu2+. Benesi-Hildebrand and Job plots demonstrate that the stoichiometry of the Cu2+ complex formed is 2:1. Preliminary studies employing epifluorescence microscopy demonstrated that Cu+2 could be imaged in human neuroblastoma SH-SY5Y cells treated with MGM.  相似文献   

17.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

18.
Sr2+ has been found to form with “Magon”[sodium 1-azo-2-hydroxy-3-(2.4-dimethylcarboxanilido)-naphthalene-1′-(2-hydroxybenzene-5-sulphonate)] in 15% ethanol in the pH range 12–13 a stable red complex (λ=495) in the ratio Sr2+∶H2R=1∶2. At optimum pH the absorption maximum is attained in 20 minutes and the complex is stable for 3 hours. The composition of the complex was found by the method of isomolar series. A regression equation has been deduced by the procedure ofKomar 6 andTolmatchev 7, and the values of the molar extinction coefficient of absorption and stability constant of the complex determined.  相似文献   

19.
A fluorescent Al3+ chemo-sensor, 1-phenyl-3-methyl-5-hydroxypyrazole-4-acetone-(3′,4′-dimethylpyrrole-2′-formyl) hydrazone (L), has been synthesized and characterized. L can detect Al3+ in ethanol solution with a significant fluorescence enhancement of a turn-on ratio over 155-fold due to the formation of a 1?:?1 complex which is based on the molar ratio between L and Al3+ ions, and the 1?:?1 stoichiometric complexation can be obtained from density functional theory calculations. No significant interference of other metal ions such as Na+, K+, Mg2+, Ca2+, Ni2+, Zn2+, Cd2+, Co2+, Cu2+, Fe3+, Cr3+, Pb2+, and Ag+ was found. The detection limit for Al3+ was 5?×?10?9?M in ethanol.  相似文献   

20.
Two novel fluorescent probes L1 and L2 for recognizing Al3+ have been prepared by cooperating salicylaldehyde-derived Schiff base groups onto the upper rim of the calix[4]arene. Of these probes, L2 is the most effective at recognizing Al3+, displaying a highly selective fluorescence “on” response with an emission wavelength at 478 nm and a Stokes shift of 88 nm. Additionally, probe L2 can form a 1 : 1 coordination complex with Al3+ with a binding constant of 2.6×1010 M−1. Furthermore, its fluorescence intensity exhibits a good linear relationship with Al3+ concentration within the range of 2.0×10−5 M to 1.4×10−4 M, and the probe has a low detection limit of 4.36×10−7 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号