首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
A new class of symmetric, end-off, N-methyl piperazine armed binucleating ligands 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-acetyl phenol (HL1) and 2,6-bis[(4-methyl piperazin-1-yl-methyl)]-(4-methylcarboxy) phenol (HL2) were synthesized by the Mannich reaction. Their mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes have been synthesized. These complexes were characterized by elemental analysis, infra-red and electronic spectral analysis. In the electronic spectra, the lower electron withdrawing nature of the C(O)CH3p-substituent (HL1) compared with the C(O)OCH3p-substituent (HL2) of the phenolic ring causes a red shift in the LMCT-charge transfer band. The mononuclear Cu(II) complexes 1 and 7 have a magnetic moment value close to the spin only value with four hyperfine EPR signals. The binuclear Cu(II) complexes 4 and 10 illustrate an antiferromagnetic interaction (μeff 1.56 and 1.55 BM) at 298 K with a broad EPR signal. A variable temperature magnetic moment study of the binuclear copper(II) complexes shows that the extent of antiferromagnetic coupling increases in the order: CHO [K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D. Velmurugan, V. Narayanan, Polyhedron 25 (2006) 2859] < C(O)CH3 < C(O)OCH3 (−2J values 134 [Shanmuga Bharathi et al., mentioned above], 149 and 158 cm−1, respectively). The mononuclear Ni(II) complexes 2 and 8 are square planar and diamagnetic. The six coordinated binuclear Ni(II) complexes 5 and 11 show a magnetic moment value of 2.96 and 2.95 BM, respectively. Electrochemical studies of the complexes reveal that all the mononuclear complexes show a single irreversible one-electron transfer reduction wave and the binuclear complexes show two irreversible one-electron transfer reduction waves in the cathodic region. There is an anodic shift in the reduction of the metal centres when the electron withdrawing nature of the p-substituent of the phenolic ring increases. The catecholase activity of the mono and binuclear copper(II) complexes, using pyrocatechol as a model substrate, and the hydrolysis of 4-nitrophenyl phosphate using the mono and binuclear copper(II), nickel(II) and zinc(II) complexes as catalysts showed that the binuclear complexes have higher rate constant values than those of the corresponding mononuclear complexes. A comparison of the spectral, electrochemical and magnetic behaviour of the complexes derived from the ligands is discussed on the basis of the substituent at the para position of the phenolic ring.  相似文献   

5.
Two tridentate imine–oxime–amine ligands have been synthesized and their corresponding copper(II) complexes have been isolated. These copper(II) complexes are readily oxidized both chemically and electrochemically to give relatively stable copper(III) complexes. In the pH range 1.5–3.0 the electron transfer process is electrochemically reversible with ΔEp = 60 mV and ipa/ipc ∼ 1. Plots of E1/2 versus pH are linear with a slope = −60 indicating the involvement of one proton in the electron transfer process. Aqueous solutions of copper(III) complexes have high molar absorption at λmax with ε > 104 M−1 cm−1. Solid samples of the complexes are diamagnetic consistent with a d8 square planar geometry. It seems that only imine–oxime nitrogens are coordinated to copper(II) with the NH2 group being free as indicated by i.r. spectra. Substitution of a –CH3 group on the carbon atom adjacent to the oxime group by the more electron donating group –CH(CH3)2 lowers electrode potential by more than 90 mV. This is consistent with an earlier observation that electron-donating substituents on the carbon atom adjacent to the oxime group lower the potential of CuIII/CuII couples and stabilize the higher oxidation state.  相似文献   

6.
Two new copper(II) complexes with aminothioether ligands, [Cu(L1)(ClO4)](ClO4) · 0.5H2O (1) and [Cu(L2)(H2O)](ClO4)2 · H2O (2) (L1 = 2-benzyl-1,3-bis(aminoethylthio)propane and L2 = 2-(4-butylbenzyl)-1,3-bis(aminoethylthio)propane), have been synthesized and characterized. The single crystal X-ray diffraction analysis reveals that both 1 and 2 adopt distorted square pyramidal geometries. The binding modes of both complexes with calf thymus DNA were investigated by UV–Vis and CD spectroscopies. The results show that both complexes mainly adopt an electrostatic attraction binding mode with DNA and the binding constants are (1.62 ± 0.02) × 103 and (2.02 ± 0.02) × 103 M−1, respectively. Both complexes are able to cleave pBR322 plasmid DNA efficiently in the presence of ascorbic acid and the activity of 2 is higher than that of 1. The DNA cleavage by 1 and 2 were inhibited strongly in the presence of DMSO and tert-butyl alcohol, which suggests that hydroxyl radicals are the reactive oxygen species for the cleavage.  相似文献   

7.
Four copper(II) complexes were synthesized by reactions of new imidazole-containing polyamine ligand N1-(2-aminoethyl)-N1-(1H-imidazol-4-ylmethyl)-ethane-1,2-diamine (HL) with Cu(ClO4)2 · 6H2O under different pH and their structures were characterized by X-ray crystallography. Interestingly, the complexes have diverse structures from protonated ligand [H3(HL)][CuCl4] · Cl (1), dinuclear [Cu2(HL)2Cl](ClO4)3 · H2O (2), one-dimensional chain polynuclear {[Cu(L)](ClO4)}n (3) to cyclic-tetranuclear [Cu4(L)4](ClO4)4 · 3CH3CN (4) coordination compounds by varying reaction pH from acidic to basic. The results indicate that the reaction pH has great impact on the formation and structure of the complexes. The magnetic measurements show that there are antiferromagnetic interactions between the Cu(II) centers with g = 2.09, J = −39.0 cm−1 and g = 2.17, J = −36.8 cm−1 for 3 and 4, respectively.  相似文献   

8.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

9.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

10.
Mononuclear copper(II) complexes, [Cu L1] (ClO4)2 (1), [Cu L2] (ClO4)2 (2) and [Cu L3] (ClO4)2 (3) with quadridentate Schiff base ligands L1 (N,N′-bis-pyridin-2-ylmethyl-butane-1,4-diimine), L2 (N,N′-bis-pyridin-2-ylmethyl-pentane-1,5-diimine) and L3 (N,N′-bis-pyridin-2-ylmethyl-hexane-1,6-diimine) have been synthesized and characterized. The crystal structure data of 1 reveals the existence of the complex in two different geometries, namely a square pyramid and a distorted octahedron, which eventually leads to the packing of the molecule into helical and anti-parallel structures respectively. Absorption titration studies with calf thymus DNA for all three complexes are suggestive of groove binding with binding constant values for 1, 2 and 3 being 2.6 ± 0.2 × 104 M−1, 11.5 ± 0.2 × 104 M−1 and 1.83 ± 0.2 × 104 M−1 respectively. Control cleavage experiments using pBR 322 plasmid DNA and distamycin suggest minor groove binding for these complexes. In the presence of ascorbic acid, the complexes show efficient DNA cleavage, the order of efficiency being 1 > 2 ≅ 3.  相似文献   

11.
Zinc(II) complexes of the formula [Zn(L)(X)2] (where X = Cl, N3, NCO and SCN (1a-d, respectively)) and {[Zn(L)(ClO4)(H2O)](ClO4)}n (2), were isolated in the pure form on the reaction of 1,3-bis(2-pyridylmethylthio)propane (L) with different zinc(II) salts. All the complexes were characterized by physicochemical and spectroscopic tools. The X-ray crystallographic analyses of the complexes 1d and 2 showed that the former is mononuclear while complex 2 is a 1D coordination polymer, {[Zn(L)(ClO4)(H2O)](ClO4)}n, due to a different coordination mode of the tetradentate ligand L. The zinc(II) ions present an octahedral coordination geometry in both compounds, which is more distorted in the mononuclear complex 1d. The study indicates that the counter anion of the zinc(II) salt used as reactant leads to a different type of complex when isolated as a crystalline material. A spectroscopic study of the interaction of complex, 2 with calf thymus-DNA (CT-DNA) in Tris-HCl buffer showed a significant non-intercalative interaction with a binding constant (Kb) of 4.7 × 104 M−1, and the linear Stern-Volmer quenching constant (Ksv) and the binding sites (n) were found to be 1.3 × 103 and 0.92 respectively, calculated from ethidium bromide (EB) fluorescence displacement experiments.  相似文献   

12.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

13.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

14.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

15.
The chemistry of first row transition metal complexes obtained from the ligand dipyrido[3,2-f:2′,3′-h]-quinoxaline (dpq) have been reported. The reaction between Cu(ClO4)2 · 6H2O with dpq under different reaction conditions led to the isolation of three polymorphic copper(II) complexes [Cu(dpq)2(H2O)](ClO4)2 · H2O (2), [Cu(dpq)2(ClO4)](ClO4) (3) and [{Cu(dpq)2(H2O)}{Cu(dpq)2(ClO4)}](ClO4)3 (4). The bluish-green compound 2, obtained by reacting Cu(ClO4)2 · 6H2O with dpq in methanol, has a distorted trigonal bipyramidal structure with τ = 0.55. The reaction between Cu(ClO4)2 · 6H2O and dpq in dry acetonitrile produced the blue compound 3 in which the copper(II) centre has a distorted square planar geometry. When the condensation reaction between 1,10-phenanthroline-5,6-dione and 1,2-diaminoethane was carried out in the presence of Cu(ClO4)2 · 6H2O in methanol, the green copper(II) complex 4 was isolated along with 1. The structure determination of 4 has established the presence of two different complex cations in the asymmetric unit and they are considered as co-crystals. In the zinc(II) compound [Zn(dpq)2(ClO4)2] (5), the two perchlorates are unidentately coordinated to the metal centre, providing a distorted octahedral geometry. The quinoxaline ring in 5 is involved in intermolecular π–π interactions, leading to the generation of a sinusoidal chain. The proton NMR spectra, especially those of the paramagnetic complexes [Ni(dpq)3](ClO4)2 (6) and [Co(dpq)3](ClO4)2 (7), have been studied in detail. The electronic absorption spectra and the redox behaviour of the copper(I), copper(II), cobalt(II) and cobalt(III) complexes have been studied. The three copper(II) compounds 24 show identical absorption spectra and redox properties when measured in acetonitrile, although in nitromethane they show small but definite differences in their spectral and redox features.  相似文献   

16.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

17.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

18.
The copper(II) complexes [Cu2(phen)2(HL1)2] (ClO4)2 (1) and [Cu2(phen)2(HL2)2] (ClO4)2 (2) synthesized from two potentially tridentate ligands N-(2-hydroxybenzyl) propanolamine (H2L1) and N-(5-methyl-2-hydroxybenzyl) propanolamine (H2L2) have centrosymmetric bis(μ2-phenoxo)-bridged dicopper(II) structures. Variable temperature magnetic measurements have revealed the existence of relatively weak antiferromagnetic interactions (1: 2J=−212.5, 2: 2J=−337.0 cm−1) with respect to the bridging angles (1: θ=101.47(18)°, 2: θ=102.79(12)°). The results suggest that the distortion index of the Cu(II) atoms (1: τ=0.73, 2: τ=0.53) may be the major factor governing the spin coupling between the copper(II) centers of these diphenoxo-bridged binuclear complexes. The coordination moieties of complex 1 are connected into a 1D linear structure via intermolecular hydrogen bonds between alkoxyl, amine, and perchlorate groups.  相似文献   

19.
《Polyhedron》1999,18(8-9):1355-1362
New symmetrical 2,6-bis{N-[2-(2-benzimidazolyl)-phenyl]iminomethyl}-4-methylphenol (L1) and unsymmetrical 2-N-[2-(2-benzimidazoyl)phenyl]iminomethyl-6-[(4-methylpiperazin-1-yl)-methyl]-4-methylphenol (L2) binucleating ligands have been synthesized. Complexation of these ligands with Cu(II) perchlorate and appropriate sodium salt offered the binuclear copper(II) complexes, [Cu2L(X)](ClO4)2, (X=Cl, OH and OAc 1–6). Their spectral, electrochemical and magnetic properties have been studied. Two distinct reduction peaks were observed at negative potentials. The electrochemical data shows that the complexes of L2 undergo reduction at less negative potential (E1pc=−0.15 to −0.25 V, E2pc=−0.45 to −0.65 V) when compared to the complexes of L1 (E1pc=−0.45 to −0.58 V, E2pc=−1.07 to −1.103 V). A variable temperature magnetic study on the complexes of the ligand L1 showed strong antiferromagnetic coupling between the copper atoms (−2J=285–295 cm−1), in contrast, the complexes of the ligand L2 showed weak antiferromagnetic interaction (−2J=60–85 cm−1). Electron spin resonance (ESR) spectra (RT) of the complexes of ligand L1 showed no signal and the complexes of ligand L2 showed a broad feature.  相似文献   

20.
Synthesis and single crystal X-ray diffraction studies of four transition metal complexes [Mn(L1)](ClO4)2 (1), [Cu(L1)](ClO4)2 (2), [Ni2(L2)(NCS)6][Ni(L1)] (3) and [Mn(bzpy)(NCS)2] (4) with neutral ligands [L1 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-yl phenylidene)amino]ethyl}amino)ethyl]ethane-1,2diamine, L2 = N-(1-pyridin-2-yl-phenylidene)-N′-[2-({2-[(1-pyridin-2-ylphenylidene)amino]ethyl}piperazine-1yl)ethyl]amine, bzpy = 2-benzoylpyridine] are reported. The trinuclear nickel(II) complex 3 is made of a dinuclear anion and a mononuclear cation. Variable-temperature magnetic susceptibility and variable-field magnetisation studies performed on 3 suggest weak antiferromagnetic coupling (J = −0.7 cm−1) between the two metals of the dinuclear entity, but no magnetic interaction between the anionic and cationic counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号