首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The coordinating properties of N-o-chlorobenzamido-meso-tetraphenylporphyrin (N-NHCO(o-Cl)C6H4-Htpp; 11) have been investigated for the Zn2+ ion. Insertion of Zn results in the formation of the zinc complex Zn(N-NCO(o-Cl)C6H4-tpp)(MeOH) · MeOH (12 · MeOH). The diamagnetic 12 · MeOH can be transformed into the diamagnetic Zn(N-NHCO(o-Cl)C6H4-tpp)Cl · CH2Cl2 (13 · CH2Cl2) in a reaction with aqueous hydrogen chloride (2%). X-ray structures for 12 · MeOH and 13 · CH2Cl2 have been determined. The coordination sphere around the Zn2+ ion in 12 · MeOH is a distorted trigonal bipyramid with N(2), N(4) and O(2) lying in the equatorial plane, whereas for the Zn2+ ion in 13 · CH2Cl2, it is a square-based pyramid in which the apical site is occupied by the Cl(1) atom.  相似文献   

2.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

3.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

4.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

5.
MgMe2 (1) was found to react with 1,4-diazabicyclo[2.2.2]octane (dabco) in tetrahydrofuran (thf) yielding a binuclear complex [{MgMe2(thf)}2(μ-dabco)] (2). Furthermore, from reactions of MgMeBr with diglyme (diethylene glycol dimethyl ether), NEt3, and tmeda (N,N,N′,N′-tetramethylethylenediamine) in etheral solvents compounds MgMeBr(L), (L = diglyme (5); NEt3 (6); tmeda (7)) were obtained as highly air- and moisture-sensitive white powders. From a thf solution of 7 crystals of [MgMeBr(thf)(tmeda)] (8) were obtained. Reactions of MgMeBr with pmdta (N,N,N′,N″,N″-pentamethyldiethylenetriamine) in thf resulted in formation of [MgMeBr(pmdta)] (9) in nearly quantitative yield. On the other hand, the same reaction in diethyl ether gave MgMeBr(pmdta) · MgBr2(pmdta) (10) and [{MgMe2(pmdta)}7{MgMeBr(pmdta)}] (11) in 24% and 2% yield, respectively, as well as [MgMe2(pmdta)] (12) as colorless needle-like crystals in about 26% yield. The synthesized methylmagnesium compounds were characterized by microanalysis and 1H and 13C NMR spectroscopy. The coordination-induced shifts of the 1H and 13C nuclei of the ligands are small; the largest ones were found in the tmeda and pmdta complexes. Single-crystal X-ray diffraction analyses revealed in 2 a tetrahedral environment of the Mg atoms with a bridging dabco ligand and in 8 a trigonal-bipyramidal coordination of the Mg atom. The single-crystal X-ray diffraction analyses of [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) showed them to be monomeric with five-coordinate Mg atoms. The square-pyramidal coordination polyhedra are built up of three N and two C atoms in 12 and three N and two Br atoms in 13. The apical positions are occupied by methyl and bromo ligands, respectively. Temperature-dependent 1H NMR spectroscopic measurements (from 27 to −80 °C) of methylmagnesium bromide complexes MgMeBr(L) (L = thf (4); diglyme (5); NEt3 (6); tmeda (7)) in thf-d8 solutions indicated that the deeper the temperature the more the Schlenk equilibria are shifted to the dimethylmagnesium/dibromomagnesium species. Furthermore, at −80 °C the dimethylmagnesium compounds are predominant in the solutions of Grignard compounds 4-6 whereas in the case of the tmeda complex7 the equilibrium constant was roughly estimated to be 0.25. In contrast, [MgMeBr(pmdta)] (9) in thf-d8 revealed no dismutation into [MgMe2(pmdta)] (12) and [MgBr2(pmdta)] (13) even up to −100 °C. In accordance with this unexpected behavior, 1:1 mixtures of 12 and 13 were found to react in thf at room temperature yielding quantitatively the corresponding Grignard compound 9. Moreover, the structures of [MgMeBr(pmdta)] (9c), [MgMe2(pmdta)] (12c), and [MgBr2(pmdta)] (13c) were calculated on the DFT level of theory. The calculated structures 12c and 13c are in a good agreement with the experimentally observed structures 12 and 13. The equilibrium constant of the Schlenk equilibrium (2 9c ? 12c + 13c) was calculated to be Kgas = 2.0 × 10−3 (298 K) in the gas phase. Considering the solvent effects of both thf and diethyl ether using a polarized continuum model (PCM) the corresponding equilibrium constants were calculated to be Kthf = 1.2 × 10−3 and Kether = 3.2 × 10−3 (298 K), respectively.  相似文献   

6.
Using Cu(II), Mn(II) or Co(II) salt and the flexible ligands, N-[(4-carboxyphenyl)-sulfonyl]glycine (H3L1) and N-[(3-carboxyphenyl)-sulfonyl]glycine (H3L2), a series of new coordination polymers, [Mn(phen)(H2O)4][HL1] (1), [Co3(L1)2(bipy)3(H2O)6]n·8nH2O (2), [Cu4(L1)2(OH)2(bipy)4]n·12nH2O (3), [Na(H2L1)(H2O)]n (4), [Mn2(HL2)2(dpe)3(H2O)2]n·ndpe (5), (phen = 1,10-phenanthroline, bipy = 4,4′-bipyridine, dpe = 1,2-di(4-pyridyl)ethylene), varying from 0D to 3D, have been synthesized and structurally characterized. Compound 1 has a [Mn(phen)(H2O)4]2+ cation and a HL12− anion. Compound 2 features a new 1D triple chain, based on octahedral cobalt atoms bridged by bipy molecules and terminally coordinated by two H3L1 ligands. Compound 3 has a 2D layered structure, constructed from new alternating chains where H3L1, hydroxyl and water molecules simultaneously act as bridging ligands. Compound 4 possesses a bilayer structure in which two adjacent layers are pillared by H3L1 ligands into a 2D bilayer network. Compound 5 is a unique 3D coordination polymer in which each Mn center binds two trans-located dpe molecules. The thermal stability as well as magnetic properties of 5 was also studied. This work and our previous work indicate that the positional isomer of the anionic N-[(carboxyphenyl)-sulfonyl]glycine is important in the construction of these network structures, which are also significantly regulated by the metal centers.  相似文献   

7.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

8.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

9.
The reaction of PhHgOAc with N-NHCO-2-C4H3S-Htpp (5) and N-p-HNSO2C6H4tBu-Htpp (4) gave a mercury (II) complex of (phenylato) (N-2-thiophenecarboxamido-meso-tetra phenylporphyrinato)mercury(II) 1.5 methylene chloride solvate [HgPh(N-NHCO-2-C4H3S-tpp) · CH2Cl2 · 0.5C6H14;  6 · CH2Cl2 · 0.5C6H14] and a bismercury complex of bisphenylmercury(II) complex of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20-tetraphenylporphyrin, [(HgPh)2(N-p-NSO2C6H4tBu-tpp); 7], respectively. The crystal structures of 6 · CH2Cl2 · 0.5C6H14 and 7 were determined. The coordination sphere around Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 is a sitting-atop derivative with a seesaw geometry, whereas for the Hg(1) in 7, it is a linear coordination geometry. Both Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and Hg(2) in 7 acquire 4-coordination with four strong bonds [Hg(1)–N(1) = 2.586(3) Å, Hg(1)–N(2) = 2.118(3) Å, Hg(1)–N(3) = 2.625(3) Å, and Hg(1)–C(50) = 2.049(4) Å for 6 · CH2Cl2 · 0.5C6H14; Hg(2)–N(1) = 2.566(6) Å, Hg(2)–N(2) = 2.155(6) Å, Hg(2)–N() = 2.583(6) Å, and Hg(2)–C(61) = 2.064(7) Å for 7]. The plane of the three pyrrole nitrogen atoms [i.e., N(1)–N(3)] strongly bonded to Hg(1) in 6 · CH2Cl2 · 0.5C6H14 and to Hg(2) in 7 is adopted as a reference plane 3N. For the Hg2+ complex in 6 · CH2Cl2 · 0.5C6H14, the pyrrole nitrogen bonded to the 2-thiophenecarboxamido ligand lies in a plane with a dihedral angle of 33.4° with respect to the 3N plane, but for the bismercury(II) complex in 7, the corresponding dihedral angle for the pyrrole nitrogen bonded to the NSO2C6H4tBu group is found to be 42.9°. In the former complex, Hg(1)2+ and N(5) are located on different sides at 1.47 and −1.29 Å from its 3N plane, and in the latter one, Hg(2)2+ and N(5) are also located on different sides at −1.49 and 1.36 Å form its 3N plane. The Hg(1)?Hg(2) distance in 7 is 3.622(6) Å. Hence, no metallophilic Hg(II)?Hg(II) interaction may be anticipated. NOE difference spectroscopy, HMQC and HMBC were employed to unambiguous assignment for the 1H and 13C NMR resonances of 6 · CH2Cl2 ·  0.5C6H14 in CD2Cl2 and 7 in CDCl3 at 20 °C. The 199Hg chemical shift δ for a 0.05 M solution of 7 in CDCl3 solution is observed at −1074 ppm for Hg(2) nucleus with a coordination number of four and at −1191 ppm for Hg(1) nucleus with a coordination number of two. The former resonance is consistent with that chemical shift for a 0.01 M solution of 6 in CD2Cl2 having observed at −1108 ppm for Hg(1) nucleus with a coordination number of four.  相似文献   

10.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

11.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

12.
The synthesis and characterization of binuclear ruthenium complexes [{(η6-C6H6)Ru}2(μ-bsh)2] (1), [{(η6-C10H14)Ru}2(μ-bsh)2] (2), [{(η6-C6Me6)Ru}2(μ-bsh)2] (3), and rhodium complex [{(η5-C5Me5)RhCl}2(μ-bsh)] (4) (bsh=N,N-bis(salicylidine)-hydrazine dianion) are reported. The complexes have been fully characterized by analytical and spectral techniques and unusual coordination mode of the ligand H2bsh has been confirmed by single crystal X-ray analysis of the complex 2. Structural data revealed extensive inter- and intra-molecular C-H?O and C-H?π interactions and involvement of methyl and isopropyl hydrogen from the p-cymene in hydrogen bonding.  相似文献   

13.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

14.
New dichloride platinum(II) complexes with 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO) have been synthesized and characterized by thermal analysis, infrared and 1H, 13C, 15N, 195Pt NMR spectroscopy. X-ray crystal structures of cis-PtCl2(NH3)(HmtpO) (1) and cis-PtCl2(HmtpO)2 · 4H2O (2b) were determined to R = 0.0332 and R = 0.0802, respectively. In both complexes the Pt(II) ions have a square-planar geometry with two adjacent corners being occupied by two nitrogens of HmtpO molecules for 2b or NH3 and HmtpO molecules for 1, whereas the remaining adjacent corners are occupied by two chloride anions. Spectroscopic data confirm the square planar geometry with N(3) bonded HmtpO, S-bonded dimethylsulfoxide and two trans chloride anions for trans-PtCl2(dmso) · 4H2O (3).  相似文献   

15.
Treatment of parent compounds [(μ-SCH2)2X]Fe2(CO)6 (A, X = O; B, X = NBu-t; C, X = NC6H4OMe-p) with N-heterocyclic carbene IMes (IMes = 1,3-bis(mesityl)imidazol-2-ylidene) generated in situ through reaction of imidazolium salt IMes ·HCl with n-BuLi or t-BuOK afforded the monocarbene-substituted complexes [(μ-SCH2)2X]Fe2(CO)5(IMes) (1, X = O; 2, X = NBu-t; 3, X = NC6H4OMe-p). Similarly, the monocarbene and dicarbene-substituted complexes [(μ-SCH2)2NBu-t]Fe2(CO)5[IMes(CH2)3IMes]·HBr (4) and [(μ-SCH2)2CH2Fe2(CO)5]2[μ-IMes(CH2)3IMes] (5, IMes = 1-(mesityl)imidazol-2-ylidene) could be prepared by reactions of parent compound B with the mono-NHC ligand-containing imidazolium salt [IMes(CH2)3IMes] · HBr and parent compound [(μ-SCH2)2CH2]Fe2(CO)6 (D) with di-NHC ligand IMes(CH2)3IMes (both NHC ligands were generated in situ from reaction of n-BuLi with imidazolium salt [IMesIMes(CH2)3IMes] · 2HBr), respectively. The imidazolium salt [IMes(CH2)3IMes] · 2HBr was prepared by reaction of 1-(mesityl)imidazole with Br(CH2)3Br. All the new model compounds 1-5 and imidazolium salt [IMes(CH2)3IMes] · 2HBr were fully characterized by elemental analysis, spectroscopy, and X-ray crystallography. On the basis of electrochemical studies of 1 and 2, compound 2 was found to be a catalyst for proton reduction to hydrogen. In addition, an EECC mechanism for this electrocatalytic reaction is preliminarily suggested.  相似文献   

16.
Treatment of the chloro-bridged dinuclear complex [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}(μ-Cl)]2 (1) with homobidentate [P,P], [As,As], [N,N], and heterobidentate [P,As], [P,N] ligands in a 1:1 molar ratio gave the dinuclear complexes [{Pd[3,4-(MeO)2C6H2C(H)N(Cy)-C6,N](Cl)}2{μ-L}] (L = Ph2PC4H6(NH)CH2PPh2 (2); Ph2As(CH2)2AsPh2 (3); 1,3-(NH2CH2)2C6H4 (4); Ph2P(CH2)2AsPh2 (5); Ph2P(CH2)2NH2 (6)), with the bidentate ligands bridging the two cyclometallated fragments.The reaction with the homobidentate ligands in a 1:2 molar ratio in the presence of NaClO4 afforded the mononuclear compounds [[Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,P}][ClO4] (L = Ph2PC4H6(NH)CH2PPh2 (7); (o-Tol)2P(CH2)2P(o-Tol)2 (8)), [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4] (9) and [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-N,N}][ClO4] (L = NH2(CH2)3NH2 (10); NH2(C6H8)CH2(C6H8)NH2 (11); 1,3-(NH2CH2)2C6H4 (12); 1,3-(NH2)2C5H3N (13); NH2(C6H4)O(C6H4)NH2 (14); NMe2(CH2)2NMe2 (15)), in which the chloro ligands are absent and the bidentate ligands are chelated to the palladium atom.Reaction of 1 with Ph2P(CH2)2AsPh2 in 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the analogous mononuclear compound [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)2AsPh2-P,As}][PF6] (16); whereas reaction with Ph2P(CH2)3NH2 gave [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)3N(CMe2)-P,N}][PF6] (17), derived from intermolecular condensation between the aminophosphine and acetone. Condensation of the NH2 group was precluded by change of solvent, using dichloromethane.Iminophoshines also reacted with 1 in 1:2 molar ratio in acetone to give a new series of mononuclear cyclometallated complexes: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,N}][ClO4] (L = Ph2PC6H4C(H)NCy (20); Ph2PC6H4C(H)NC(CH3)3 (21); Ph2PC6H4C(H)NNMe2 (22); Ph2PC6H4C(H)NNHMe (23); Ph2PC6H4C(H)NNHPh (24)). Analogous complexes with a stable P,O-chelate were obtained using bidentate [P,O] donor ligands: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,O}][Cl] (L = 2-(Ph2P)C6H4CHO (25); Ph2PN(Me)C(O)Me (26)).The crystal structures of compounds 1, 5, 15, 16, 18, 20 have been determined by X-ray crystallography.  相似文献   

17.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

18.
Three polynuclear transition metal complexes [Mn8(DMF)8(L1)8] · 4DMF (1), [Mn6(DMF)6(L2)6] · [Mn6(DMF)4(H2O)2(L2)6] · 2DMF (2), [Cu3(L3)2(py)2] (3) of the pentadentate ligands N-acyl-salicylhydrazides were synthesized and characterized, their crystal structures were investigated. The oxidation state and properties of the central metal ions are important in crystal structure formation, trivalent Mn(III) ion which easily form stable octahedral coordination metallamacrocycle complexes, metallacrowns 1 and 2 were obtained; while bivalent Cu(II) ion is easier to form square planar, trinuclear complexes 3 was obtained. The steric effect of the N-acyl side chains also plays an important role in the structures of these polynuclear complexes. The magnetic property of 1 was also investigated.  相似文献   

19.
Two coordination compounds of palladium(II) with N-allylimidazole (l) of the general formula [PdL4]Cl2 · 3H2O (1) and trans-[PdL2Cl2] (2) have been synthesized. The crystal and molecular structure of complexes 1 and 2 was established by single-crystal X-ray diffraction analysis. The X-ray structural data were supplemented by solid-state 13C NMR measurements (CP MAS and PASS 2D). The 1D and 2D NMR studies in solution reveal that complex 1 is unstable at room temperature and undergoes reversible decomposition to 2. The method for how to preserve a complex with four allyl-imidazole ligands in solution is shown.  相似文献   

20.
The chemistry of first row transition metal complexes obtained from the ligand dipyrido[3,2-f:2′,3′-h]-quinoxaline (dpq) have been reported. The reaction between Cu(ClO4)2 · 6H2O with dpq under different reaction conditions led to the isolation of three polymorphic copper(II) complexes [Cu(dpq)2(H2O)](ClO4)2 · H2O (2), [Cu(dpq)2(ClO4)](ClO4) (3) and [{Cu(dpq)2(H2O)}{Cu(dpq)2(ClO4)}](ClO4)3 (4). The bluish-green compound 2, obtained by reacting Cu(ClO4)2 · 6H2O with dpq in methanol, has a distorted trigonal bipyramidal structure with τ = 0.55. The reaction between Cu(ClO4)2 · 6H2O and dpq in dry acetonitrile produced the blue compound 3 in which the copper(II) centre has a distorted square planar geometry. When the condensation reaction between 1,10-phenanthroline-5,6-dione and 1,2-diaminoethane was carried out in the presence of Cu(ClO4)2 · 6H2O in methanol, the green copper(II) complex 4 was isolated along with 1. The structure determination of 4 has established the presence of two different complex cations in the asymmetric unit and they are considered as co-crystals. In the zinc(II) compound [Zn(dpq)2(ClO4)2] (5), the two perchlorates are unidentately coordinated to the metal centre, providing a distorted octahedral geometry. The quinoxaline ring in 5 is involved in intermolecular π–π interactions, leading to the generation of a sinusoidal chain. The proton NMR spectra, especially those of the paramagnetic complexes [Ni(dpq)3](ClO4)2 (6) and [Co(dpq)3](ClO4)2 (7), have been studied in detail. The electronic absorption spectra and the redox behaviour of the copper(I), copper(II), cobalt(II) and cobalt(III) complexes have been studied. The three copper(II) compounds 24 show identical absorption spectra and redox properties when measured in acetonitrile, although in nitromethane they show small but definite differences in their spectral and redox features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号