首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

2.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

3.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

4.
Two series of complexes of the types trans-[CoIII(Mebpb)(amine)2]ClO4 {Mebpb2− = N,N-bis(pyridine-2-carboxamido)-4-methylbenzene dianion, and amine = pyrrolidine (prldn) (1a), piperidine (pprdn) (2a), morpholine (mrpln) (3a), benzylamine (bzlan) (4a)}, and trans-[CoIII(cbpb)(amine)2]X {cbpb2− = N,N-bis(pyridine-2-carboxamido)-4-chlorobenzene dianion, and amine = pyrrolidine (prldn), X = PF6 (1b), piperidine (pprdn), X = PF6 (2b), morpholine (mrpln), X = ClO4 (3b), benzylamine (bzlan), X = PF6 (4b)} have been synthesized and characterized by elemental analyses, IR, UV–Vis, and 1H NMR spectroscopy. The crystal structure of 1a has been determined by X-ray diffraction. The electrochemical behavior of these complexes, with the goal of evaluating the effect of axial ligation and equatorial substitution on the redox properties, is also reported. The reduction potential of CoIII, ranging from −0.53 V for (1a) to −0.31 V for (3a) and from −0.48 V for (1b) to −0.22 V for (3b) show a relatively good correlation with the σ-donor ability of the axial ligands. The methyl and chloro substituents of the equatorial ligand have a considerable effect on the redox potentials of the central cobalt ion and the ligand-centered redox processes.  相似文献   

5.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

6.
Four copper(II) complexes were synthesized by reactions of new imidazole-containing polyamine ligand N1-(2-aminoethyl)-N1-(1H-imidazol-4-ylmethyl)-ethane-1,2-diamine (HL) with Cu(ClO4)2 · 6H2O under different pH and their structures were characterized by X-ray crystallography. Interestingly, the complexes have diverse structures from protonated ligand [H3(HL)][CuCl4] · Cl (1), dinuclear [Cu2(HL)2Cl](ClO4)3 · H2O (2), one-dimensional chain polynuclear {[Cu(L)](ClO4)}n (3) to cyclic-tetranuclear [Cu4(L)4](ClO4)4 · 3CH3CN (4) coordination compounds by varying reaction pH from acidic to basic. The results indicate that the reaction pH has great impact on the formation and structure of the complexes. The magnetic measurements show that there are antiferromagnetic interactions between the Cu(II) centers with g = 2.09, J = −39.0 cm−1 and g = 2.17, J = −36.8 cm−1 for 3 and 4, respectively.  相似文献   

7.
The 2-imino-1,10-phenanthroline ligands, 1,10-C12H7N2-2-CRN(2,6-i-Pr2-4-R1-C6H2) [R = R1 = H (L1); R = H, R1 = Br (L2); R = H, R1 = CN (L3); R = H, R1 = i-Pr (L4); R = Me, R1 = H (L5); R = Me, R1 = i-Pr (L6)], have been prepared in high yield from the condensation reaction of 1,10-C12H7N2-2-CRO (R = H, Me) with one equivalent of the corresponding 4-substituted 2,6-diisopropylaniline. The molecular structures of L2, L5 and L6 reveal the imino nitrogen atoms to adopt a transoid configuration with respect to the phenanthrolinyl nitrogen atoms. Treatment of Lx with one equivalent of CoCl2 in n-BuOH at 90 °C gives the high spin complexes, (Lx)CoCl2 [Lx = L1 (1a), L2 (1b), L3 (1c), L4 (1d), L5 (1e), L6 (1f)], in which the metal centres exhibit distorted square pyramidal geometries. Activation of 1a-1f with excess methylaluminoxane (MAO) gives catalysts that are modestly active for the oligomerisation of ethylene affording mainly linear α-olefins along with some degree of internal olefins. While the donor capability of the 4-position of the N-aryl group does not appear to affect the activity of the catalyst, it does have an influence on the ratio of α-olefins to internal olefins. Single crystal X-ray diffraction studies have been performed on L2, L5, L6, 1a, 1c and 1f.  相似文献   

8.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

9.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

10.
The direct self-assembly of bis-(1-benzoimidazolymethylene)-(2,5-thiadiazoly)-disulfide (L) with CuSO4, Cu(NO3)2 and CuCl2 affords three novel supramolecular complexes: 1-D ladder-like chain complex {[Cu(SO4)(L)] · (CH3OH)}n (1), dimer complexes {[Cu(L)(CH3O)]2(NO3)2} · 2H2O (2) and [Cu(L)(Cl)(N3)]2 · 2CH3OH (3). The nature of the anions is the underlying reason behind the differences in the structures of this series of complexes. Furthermore, utilizing the coordinatively unsaturated complexes 2 and 3 as precursor complexes, two new derivative complexes [Cu(L)(NCS)(CH3O)]2 · 2CH3OH (2A) and [Cu(L)(ClO4)(N3)]2 · 2CH3OH (3A) are obtained by the addition and exchange reactions of complexes 2 and 3 with anions. X-ray crystallographic analysis shows that the two derivatives retain the skeletons of their precursor complexes, and the anions with the stronger coordination capacity only bind to the active position of precursor complexes. In addition, different from the obvious effects on the structures in the direct self-assembly of the metal and ligand, the change of counteranions has no great impact on the structures in the anion exchange reactions. We also study the catalytic activities of the complexes 2, 2A, 3, and 3A, which have similar skeletons, for the oxidative coupling polymerization of 2,6-dimethylphenol (DMP). And we find that the introductions of different coordination counterions produce significant impacts on the catalytic properties of these complexes.  相似文献   

11.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

12.
Zinc(II) complexes of the formula [Zn(L)(X)2] (where X = Cl, N3, NCO and SCN (1a-d, respectively)) and {[Zn(L)(ClO4)(H2O)](ClO4)}n (2), were isolated in the pure form on the reaction of 1,3-bis(2-pyridylmethylthio)propane (L) with different zinc(II) salts. All the complexes were characterized by physicochemical and spectroscopic tools. The X-ray crystallographic analyses of the complexes 1d and 2 showed that the former is mononuclear while complex 2 is a 1D coordination polymer, {[Zn(L)(ClO4)(H2O)](ClO4)}n, due to a different coordination mode of the tetradentate ligand L. The zinc(II) ions present an octahedral coordination geometry in both compounds, which is more distorted in the mononuclear complex 1d. The study indicates that the counter anion of the zinc(II) salt used as reactant leads to a different type of complex when isolated as a crystalline material. A spectroscopic study of the interaction of complex, 2 with calf thymus-DNA (CT-DNA) in Tris-HCl buffer showed a significant non-intercalative interaction with a binding constant (Kb) of 4.7 × 104 M−1, and the linear Stern-Volmer quenching constant (Ksv) and the binding sites (n) were found to be 1.3 × 103 and 0.92 respectively, calculated from ethidium bromide (EB) fluorescence displacement experiments.  相似文献   

13.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

14.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

15.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

16.
Aluminium complexes bearing the N,N-chelating ligand 1,4-bis(2-hydroxy-3,5-di-tert-butyl)piperazine (1) have been synthesised. Both monometallic and bimetallic aluminium methyl complexes (2 and 3, respectively) were prepared by treatment of 1 with the appropriate amount of AlMe3. Complex 2 can be converted to 3 by addition of excess AlMe3. Bimetallic aluminium-ethyl complex 4 was also prepared. Treatment of 1 with AlEt2Cl afforded the monometallic chloride complex 5. Treatment of this latter complex with potassium alkoxides (KOR, R = Me, Et, iPr, tBu) or AgOTf afforded the corresponding aluminium alkoxide complexes (6, R = Et; 7, R = Me; 8, R = iPr; 9, R = tBu; 10, R = OTf) in good yields. Aluminium ethoxide complex 6 was also synthesised by treatment of 1 with AlEt2OEt. All of these complexes were tested as potential catalysts in the ring-opening polymerisation of rac-lactide and caprolactone with limited success.  相似文献   

17.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

18.
Two new mixed-ligand Ru(II) complexes [Ru(pdto)(dppt)](ClO4)2 (1) and [Ru(bbdo)(dppt)](ClO4)2 (2), where pdto = 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane, bbdo = 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane and dppt = 3-(pyridin-2-yl)-5,6-diphenyl-1,2,4-triazine, have been isolated and characterised by elemental analysis. NMR and electronic absorption and emission spectral and electrochemical techniques have been used to investigate the solution structures and electronic properties of the complexes. The 1H and 13C spectra of the complexes in solution reveal that the N2S2 donor set of the pdto and bbdo ligands is “cis-α” coordinated and the dppt ligand is chelated to Ru(II) through both triazine N2 and pyridine nitrogen atoms. The proton chemical shifts of the phenyl rings of dppt are not affected much upon coordination, supporting the triazine N2 rather than N4 coordination. The anomalous upfield shifts of the H61 and H62 (1) and H72 and H81 (2) protons are caused by the shielding magnetic anisotropy due to the ring currents of the py and tra rings of dppt, which are forced to be coplanar by coordination. The py and bzim rings of pdto and bbdo are obliged to rotate away from dppt and the Ru–Npy and Ru–Nbzim bonds lengthen in order to minimise the steric clashes with dppt. The c.i.s values for 1 are less positive than those for 2 suggesting that the ligand bzim nitrogens of bbdo rather than the py nitrogens of pdto are involved in stronger σ-bonding with Ru(II). Both the complexes display a strong MLCT transition (1, 470; 2, 515 nm) along with intense intraligand transitions in the UV region, and when excited in the MLCT band an emission band (650 nm) is observed for both 1 and 2. In acetonitrile solution they show a quasi-reversible Ru(II)/Ru(III) redox couple (E1/2, 1, 1.18; 2, 0.90 V). Two more redox processes (E1/2, 1, −0.97, −1.09; 2, −1.06, −1.42 V) involving the coordinated dppt ligand are also observed. A plot of the difference between the metal oxidation and ligand reduction potentials of the complexes versus the absorption or emission maxima is linear, illustrating that the lowest π orbitals of dppt are involved in the redox, absorption and emission processes in the complexes. Electrochemical parameterisation of the Ru(II)/Ru(III) redox potentials of the present complexes has been carried out using Lever’s method and the calculated ligand reduction potential EL(L) correlates well with the observed Ru(II)/Ru(III) redox potentials.  相似文献   

19.
Four new mixed ligand nickel(II) complexes viz., [Ni(tren)(phen)](ClO4)2 (1), [Ni(tren)(bipy)](ClO4)2 (2), [Ni(SAA)(PMDT)] · 2H2O (3) and [Ni(SAA)(TPTZ)] (4) (tren = tris(2-aminoethylamine), phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, SAA = salicylidene anthranilic acid, PMDT = N,N,N′,N″,N″-pentamethyldiethylenetriamine, TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) have been synthesized and characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of [Ni(tren)(phen)](ClO4)2 (1) and [Ni(SAA)(PMDT)] · 2H2O (3) has revealed the presence of a distorted octahedral geometry. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

20.
Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = −3.34 cm−1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm−1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = −0.182 (R= 0.92) and −0.684 (R= 0.99) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号