首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four coordination polymers, [Zn(pda)(bpy)(H2O)]n·nH2O (1), [Cd(pda)(prz)(H2O)]n (2), [Co3(μ3-OH)2(pda)2(pyz)]n·2nH2O (3) and [Pr2(pda)3(H2O)2]n (4) (H2pda=1,3-phenylendiacetic acid, bpy=4,4′-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and π-π stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm3 mol−1 K, and θ=−23.9 and −46.3 K, respectively.  相似文献   

2.
A series of lanthanide(III) complexes with chelidamic acid ligand, [Ln(C7H2NO5)·3H2O]n·nH2O (Ln = La (1), Y (2), Sm (3), and Nd (4)), [Gd2(C7H2NO5)3·4H2O]n·2nH2O (5) and [Ce(C7H2NO5)·1.5H2O]n (6), have been synthesized by hydrothermal method and structurally characterized by single-crystal X-ray diffraction. Complexes 14 are isostructural and possess 2D framework. Complex 5 contains two different Gd(III) ions linked through carboxylate group to form a 2D framework. Complex 6 exhibits a (44) topology 2D network. The variable-temperature magnetic properties of 3 and 5 have been investigated. Furthermore, the photoluminescent properties of 1, 2, 3, and 5 at room temperature were also studied.  相似文献   

3.
Nine new compounds, namely [CuL1(biim-6)] · H2O (1), [ZnL1(biim-6)] · H2O (2), [MnL1(biim-6)] · H2O (3), [MnL1(biim-4)] (4), [Co2(L2)2(biim-5)3 · 6H2O] · 8H2O (5), [ZnL3(biim-6)] (6), [ZnL3(biim-5)] (7), [CdL3(biim-5) · 1.5H2O] · 0.5H2O (8) and [CdL4(biim-6) · 2H2O] (9) [where L1 = oxalate anion, L2 = fumarate anion, L3 = phthalate anion, L4 = p-phthalate anion, biim-4 = 1,1′-(1,4-butanediyl)bis(imidazole), biim-5 = 1,1′-(1,5-pentanedidyl)bis(imidazole) and biim-6 = 1,1′-(1,6-hexanedidyl)bis(imidazole)] were successfully synthesized. Compounds 13 are isostructural, and display 2D polymeric structures. Compound 4 shows a threefold interpenetrating diamondoid framework. In compound 5, the anions act as counterions, and the metal cations are bridged by bis(imidazole) ligands to form 1D polymeric chains. Compounds 69 show 2D polymeric structures. The magnetic properties for 1, 3 and 4 and luminescent properties for 2 and 69 are discussed. Thermogravimetric analyses (TGA) for these compounds are also discussed.  相似文献   

4.
Five new Cu(II) complexes [Cu(psa)(phen)] · 3H2O (1), [Cu(psa)(2bpy)] · 0.5H2O (2), [Cu(psa)(2bpy)(H2O)] · 3H2O (3), [Cu(psa)(4bpy)] · H2O (4), and [Cu(psa)0.5(N3)(2bpy)] (5) (H2psa = phenylsuccinic acid, phen = 1,10-phenanthroline, 2bpy = 2,2′-bipyridine, and 4bpy = 4,4′-bipyridine) were obtained under solvothermal conditions and characterized by single-crystal X-ray diffraction. Complexes 2 and 3 were formed by one-pot reaction. In complex 2, Cu(II) ion is four-coordinated and locates at a slightly distorted square center. In complex 3, the coordinated water molecule occupies the axial site of Cu(II) ion forming a tetragonal pyramid geometry. Complexes 1 and 3 are of 1D chain structures, and extended into 2D supramolecular network by hydrogen bonds. Complex 2 is of zipper structure, and further assembled into 2D supramolecular network by hydrogen bonds and π–π stacking interactions. Complex 4 is a 3D CdSO4-like structure with twofold interpenetration, while complex 5 is a dinuclear compound. The different structures of complexes 15 can be attributed to using the auxiliary ligands, indicating an important role of the auxiliary ligands in assembly and structure of the title complexes.  相似文献   

5.
The reaction of copper(II) hydroxocarbonate, mandelic acid (H2MANO) and 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) in water affords [Cu(bpy)(μ2-MANO)]2 · 8H2O (1), [Cu(bpy)(MANO)] · 4H2O (2) and the opened tetranuclear hydroxo-bridged copper(II) complexes of formulae [Cu43-OH)22-MANO)2(bpy)4](phglyo)2 · 8H2O (3) (phglyo = phenylglyoxylate) or [Cu43-OH)22-OH)2(OH2)2(phen)4](Bza)2(OH)2 · 5H2O (4) (Bza = benzoate), respectively. The compounds have been characterized by spectroscopic techniques and studied by single-crystal X-ray diffractometry. The formation of 3 and 4 takes place in basic media through dehydrogenation or oxidative dehydrogenation followed by in situ oxidative decarboxylation of mandelic acid to phenylglyoxylate or benzoate, respectively. These results indicate that cooperative catalysis of diimine ancillary ligands and copper(II) is essential.  相似文献   

6.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

7.
Metal–organic frameworks with the compositions [Zn(bpy)(bdc)(H2O)]n1, [Zn(bpy)(btec)1/2(H2O)]n2, [Cd(bpy)(bdc)(H2O)]n3 and Cd(bpy)(btec)1/2(H2O)]n4 (H2bdc = 1,4-benzenedicarboxylic acid = terephthalic acid, H4btec = 1,2,4,5-benzenetetracarboxylic acid and bpy = 2,2′-bipyridine) have been synthesized and characterized using spectroscopic and single-crystal X-ray diffraction techniques. In these complexes, ZnII/CdII-2,2′-bipyridine units and carboxylate anions exists as nodes and spacers respectively. An infinite 1D zig-zag chain structure is observed for both complexes 1 and 3, whereas complexes 2 and 4 display a 3D supramolecular architecture. The complexes are found to be photoluminescent, porous and show significant thermal stability.  相似文献   

8.
A series of metal-organic frameworks, namely [Ni(PDB)(H2O)]n (1), [Pb(PDB)(H2O)] · (H2O) (2), [Co2(PDB)2(bpy)2(H2O)4] · 4H2O (3) and [Co2(PDB)2(phen)2]n (4) (H2PDB = pyridine-3,5-dicarboxylic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized based on pyridine-3,5-dicarboxylate acid and two neutral chelate ligands, with different metal ions such as NiII, CoII and PbII, under hydrothermal conditions. The framework structures of these polymeric complexes have been determined by the X-ray single crystal diffraction technique. In the four complexes, the pyridine-3,5-dicarboxylate acid ligand exhibits diverse coordination modes, which play an important role in the construction of metal-organic frameworks. The thermal analyses of these four complexes have been measured and discussed. In addition, complex 2 shows strong phosphorescent emission at room temperature and the magnetic measurement of the polymer of 4 reveals a typical antiferromagnetic exchange.  相似文献   

9.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities.  相似文献   

10.
Six new complexes constructed by 5-sulfosalicylic acid and bipyridyl-like ligands (2,2′-bipy and 1,10-phen), namely [Cu4(OH)2(ssal)2(phen)4 · 7H2O] (1), [Cu4(OH)2(ssal)2(bipy)4 · 2H2O] (2), [Cd(Hssal)(bipy)] (3), [Cd(HL)2(phen)2] (4), [Cr(ssal)(bipy)(H2O)2 · 2H2O] (5) and [Cr(ssal)(phen)2] (6) (H3ssal = 5-sulfosalicylic acid, H2L = p-hydroxybenzenesulfonic acid, bipy = 2,2′-bipy, phen = 1,10-phen) were prepared under hydrothermal conditions and their structures were determined by single-crystal X-ray diffraction. Complexes 1 and 2 are both tetranuclear copper complexes with a stepped topology. In complex 3, a new coordination mode of the Hssal2− group is reported in this work. During the synthetic process of complex 4, in situ decarboxylation of 5-sulfosalicylic acid into p-hydroxybenzenesulfonic acid is involved. Two chromium 5-sulfosalicylates (5 and 6) are reported for the first time. These new complexes display different supramolecular structures by O–H?O, C–H?O hydrogen bonds as well as π?π, C–H?π and O?π interactions. The results of magnetic determination show that ferromagnetic interactions exist in complex 1, however, antiferromagnetic interactions exist in 2.  相似文献   

11.
Five two-dimensional divalent cobalt coordination polymers containing 4,4′-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared hydrothermally and structurally characterized by single-crystal X-ray diffraction. [Co(mg)(bpy)]n (1, mg=3-methylglutarate) forms a (4,4) rhomboid grid structure based on the connection of {Co2(CO2)2} dimeric units. Using the more sterically encumbered ligands 3,3-dimethylglutarate (dmg) and 3-ethyl, 3-methylglutarate (emg) generated {[Co(dmg)(bpy)(H2O)]·2H2O}n (2) and {[Co(emg)(bpy)(H2O)]·H2O}n (3), respectively. These complexes manifest {Co(CO2)}n chains linked into 2-D by aliphatic dicarboxylate and bpy ligands. The “tied-back” substituted glutarate ligand 1,1-cyclopentanediacetate (cda) afforded [Co(cda)(bpy)]n (4), and the unsubstituted glutarate (glu) generated [Co(glu)(bpy)]n (5), both of which exhibit a topology similar to that of 1. The magnetic properties of complexes 1-4 were analyzed successfully with a recently developed phenomenological chain model accounting for both magnetic coupling (J) and zero-field splitting effects (D), even though 1 and 4 contain isolated, discrete {Co2(CO2)2} dimers. The D parameter in this series varied between 21.8(8) and 48.0(9) cm−1. However weak antiferromagnetic coupling was observed in 1 (J=-2.43(4) cm−1) and 4 (J=−0.89(2) cm−1), while weak ferromagnetic coupling appears to be operative in both 2 (J=0.324(5) cm−1) and 3 (J=0.24(1) cm−1).  相似文献   

12.
Reactions of metal acetates with 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-abpt) and co-ligands gave rise to four new complexes, namely [Zn2(3-abpt)(beta)(DMF) (H2O)2]n·nH2O (1), [Zn(3-abpt)(ip)]n·3nH2O (2), [Zn(3-abpt)(ip)(H2O)2]n·2nH2O (3), and [Cu2(3-abpt)2(C6H5COO)4(H2O)2]n·2nH2O (4) (ip = isophthalate, beta = 1,2,4,5-benzenetetracarboxylate). Compound 1 is a 3D coordination polymer with uncommon 3,4-connected (62.8)2(62.82.102) network. Compounds 24 are all 1D coordination polymers, which exhibit diversity structures. Compound 2 is a tubular-like chain, 3 is a ring-like network, and 4 is a zigzag chain. Their thermal stabilities and the photoluminescence of 1 have also been investigated.  相似文献   

13.
Five mixed ligands coordination polymers [Ag4(apym)2(pma)·(H2O)2]n (1), {[Ag4(dmapym)4(pma)·(H2O)2]·(H2O)6}n (2), [Ag2(apyz)2(H2pma)·(H2O)4]n (3), {[Ag4(apyz)2(pma)·(H2O)2]·(H2O)2}n (4) and [Ag4(NH3)8(pma)·(H2O)6]n (5) (apym = 2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, apyz = 2-aminopyrazine, H4pma = pyromellitic acid) were synthesized and characterized. For 1 and 2, as the substituents change from H to methyl, the dimensions of 12 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 3 and 4, as the ratios of Ag2O/apyz/pma vary from 1:1:1 to 2:1:1, the structure of 3 is a 1D ladder structure built from Ag-apyz double chains and pma anions, while the structure of 4 is a two-dimension (2D) grid. As excess ammonia is added to above four reaction systems, the structure of 5 contains unprecedented {[Ag(NH3)2]+}n chains and pma anions. The substituent on the pyrimidyl ring, ratios of reactants, solvent systems and ligand isomers intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the coordination polymers. The photoluminescent properties of 15 were also investigated.  相似文献   

14.
The reactions of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine with CuCl2 · 2H2O, Cu(NO3)2 · 3H2O and CuSO4 · 5H2O have been examined, and four [CuCl2(dppt)] (1), [CuCl2(dppt)2] · 2MeOH (2), [Cu(dppt)2(H2O)2](NO3)2 (3) and [Cu(SO4)(dppt)(H2O)]n · nH2O (4) complexes have been obtained. All the complexes have been structurally and spectroscopically characterized, and compound 4 has been additionally studied by magnetic measurements. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and the time-dependent DFT calculations have been employed to calculate the electronic spectrum of 1.  相似文献   

15.
16.
Reactions of 2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid (H3PyIDC) with a series of Ln(III) ions affords ten coordination polymers, namely, {[Ln(H2PyIDC)(HPyIDC)(H2O)2]·H2O}n [Ln=Nd (1), Sm (2), Eu (3) and Gd (4)], {[Ln(HPyIDC)(H2O)3]·(H2PyIDC)·H2O}n [Ln=Gd (5), Tb (6), Dy (7), Ho (8) and Er (9)], and {[Y2(HPyIDC)2(H2O)5]·(bpy)·(NO3)2·3H2O}n (10) (bpy=4,4′-bipyridine). They exhibit three types of networks: complexes 1-4 are isomorphous coordination networks containing neutral 2D metal-organic layers, while complexes 5-9 are isomorphous, which consist of cationic metal-organic layers and anionic organic layers, and complex 10 is a 2D network built up from 4-connected HPyIDC2− anion and 4-connected Y(III) ions. In addition, thermogravimetric analyses and solid-state luminescent properties of the selected complexes are investigated. They exhibit intense, characteristic emissions in the visible region at room temperature.  相似文献   

17.
Four novel lanthanide coordination polymers [Pr(mal)(OH)(bipy) · 2H2O]n (1), {[Dy1(SBA)3(H2O)2][Dy2(SBA)3(H2O)2] · 4H2O}n (2), {[Tb(OHnic)(Onic)(H2O)5 · (OHnicH)] · H2O}n (3) and {[Sm(OHnic)(Onic)(H2O)5 · (OHnicH)] · H2O}n (4) (Hmal = maleic acid, HSBA = 4-sulfobenzoic acid, OHnicH = 6-hydroxynicotinic acid and bipy = 2,2′-bipyridine) have been synthesized and determined by single crystal X-ray diffraction. Complex 1 is a 1-D helical chain with seven-coordinated praseodymium centers. Complex 2 forms 1-D chain-like molecular structure containing two crystallographically unique dysprosium centers, the Dy1 center is seven-coordinated while Dy2 is eight-coordinated. The isomorphous complexes 3 and 4 exhibit an unprecedented 1-D chain-like polymeric structure through hydroxyl oxygen atoms of bridging Onic2− anions linking up the neighboring central ions, and there exist three types of 6-OHnicH ligands in the structural unit which is rare for lanthanide carboxylate complexes. The photophysical properties of these complexes were studied using ultraviolet absorption spectra, fluorescence excitation and emission spectra.  相似文献   

18.
{[Pb3(CPIDA)2(H2O)3]·H2O}n1, {[Cd3(CPIDA)2(H2O)4]·5H2O}n2, [Cd(HCPIDA)(bpy)(H2O)]n3 (bpy=4,4′-bipyridine) and {[Co3(CPIDA)2(bpy)3(H2O)4]·2H2O}n4 were synthesized with N-(4-carboxyphenyl) iminodiacetic acid (H3CPIDA). In 1, the CPIDA3− ligands adopt chelating and bridging modes with Pb(II) to possess a 3D porous framework. In 2D-layer 2, the CPIDA3− ligands display a simple bridging mode with Cd(II). The 2D layers have parallelogram-shaped channels along a axis. With bpy ligands, the HCPIDA2− ligands in 3 show more abundant modes, but 3 still displays a 2D sheet on bc plane for the unidentate bpy molecules. However, in 3D-framework 4, the bpy ligands adopt bridging bidentate at a higher pH value and the CPIDA3− ligands show bis-bidentate modes with Co(II). Additionally, 2D correlation analysis of FTIR was introduced to ascertain the characteristic adsorptions location of the carboxylate groups with different coordination modes in 4 with thermal and magnetic perturbation. Compounds 1, 2 and 4 exhibit the fluorescent emissions at room temperature.  相似文献   

19.
The use of succinamic acid (H2sucm)/N,N′-chelate (2,2′-bipyridine, bpy; 4,4′-dimethyl-2,2′-bipyridine, dmbpy; 1,10-phenanthroline, phen) ‘ligand blends’ in CuX2·yH2O (X = NO3, y = 3; X = Cl, y = 0) chemistry has yielded the new complexes [Cu2(Hsucm)3(bpy)2](NO3)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)Cl(bpy)2](OH)·3.6H2O (5·3.6H2O) and [Cu2(Hsucm)2Cl2(phen)2] (6). The succinamate(−1) ion behaves as a carboxylate ligand and exists in two different coordination modes in the structures of the above complexes, i.e., the common syn, syn μ2OO′ in 1, 5 and 6, and the μ22OO′ in 1. The primary amide group of Hsucm remains uncoordinated and participates in intermolecular hydrogen bonding interactions leading to 1D, 2D and 3D networks. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands.  相似文献   

20.
Four novel coordination polymers constructed from flexible pamoic acid, namely [Co(pam)(4,4′-bipy)]n·nH2O (1), [Ni(pam)(4,4′-bipy)(H2O)2]n·2nCH3CN (2), [Cd(pam)(py)2]n·npy (3) and [Mn2(pam)2(py)6(H2O)2]n·2npy (4), (H2pam = pamoic acid, 4,4′-bipy = 4,4′-bipyridine, py = pyridine), have been synthesized and characterized by elemental analysis, infrared spectra and X-ray crystallography. Complex 1 is a 2-D coordination polymer constructed from chelating bis-bidentate pam and 4,4′-bipyridine bridging ligands. Complex 2 is a 2-D coordination polymer assembled by bis-monodentate pam and 4,4′-bipyridine, where acetonitrile is filled in the rectangle channels. Both 2-D coordination polymers display undulated (4,4) grid layers as sql topology. Complex 3 displays a 1-D polymeric chain using chelating bis-bidentate pam as bridging ligand. Complex 4 exhibits an interesting bis-monodentate pam-Mn(II) 1-D polymeric chain, in which exist two-type six-coordinated manganese centers. Mn(1) is bound to four pyridine ligands, whereas Mn(2) is combined to two pyridine and two H2O molecules. Their thermal stabilities have been investigated. Cadmium complex 3 displays strong green luminescence with emission maximum at 543 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号