首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Choi JK  Tak KH  Jin LT  Hwang SY  Kwon TI  Yoo GS 《Electrophoresis》2002,23(24):4053-4059
A background-free, fast protein staining method in polyacrylamide gel electrophoresis using an acidic dye, zincon (ZC) and a basic dye, ethyl violet (EV) is described. It is based on the counterion dye staining technique that employs two oppositely charged dyes to form an ion-pair complex in staining solution. The selective binding of free dye molecules to proteins in acidic solution produces bluish violet-colored bands. It is a rapid and end-point staining procedure, involving only fixing and staining steps that are completed in 1-1.5 h. The detection limit of this method is 8-15 ng of protein that is comparable to the sensitivity of the colloidal Coomassie Brilliant Blue G (CBBG) stain. Due to its sensitivity and speed, this stain may be more practical than any other dye-based stains for routine laboratory purposes.  相似文献   

2.
Jin LT  Hwang SY  Yoo GS  Choi JK 《Electrophoresis》2004,25(15):2494-2500
A highly sensitive silver staining method for detecting proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was developed. It is based on the silver nitrate staining method but also employs an azo dye, calconcarboxylic acid (NN), as a silver-ion sensitizer. It increases silver binding on protein bands or spots by the formation of a silver-dye complex and also increases the reducing power of silver ions to metallic silver by NN itself with formaldehyde. After a 2 h gel fixing step, the protocol including sensitization, silver-ion impregnation, and reduction steps can be completed in 1 h. The sensitivity is superior to that of silver stain with glutardialdehyde as a silver-ion sensitizer. The detection limit of NN-silver stain is 0.05-0.2 ng protein. Considering the high sensitivity without using glutardialdehyde, the NN-silver stain would be useful for routine silver staining of proteins.  相似文献   

3.
Jin LT  Choi JK 《Electrophoresis》2004,25(15):2429-2438
Since 1993, we have studied visible organic dye stains for protein or DNA to improve methodologies and developed the counterion dye staining method. The method employs two oppositely charged dyes that form an ion-pair complex in the staining solution. The selective binding of free dye to protein or DNA in the staining solution improves detection sensitivity and speed. It is a rapid and sensitive procedure, involving fixing/staining or staining/quick destaining steps that are completed in 1-1.5 h. The lowest detection limits achieved are 4-8 ng of protein on polyacrylamide gels and approximately 10 ng of DNA on agarose gels. The focus of this review is to chronicle the development and current status of the counterion dye staining method for detection of protein or DNA. As an extended application of visible dyes, we also discuss the visible dye staining method for detecting protein on blotting membranes developed in our laboratory.  相似文献   

4.
Proteins separated by two-dimensional (2-D) gel electrophoresis can be visualized using various protein staining methods. This is followed by downstream procedures, such as image analysis, gel spot cutting, protein digestion, and mass spectrometry (MS), to characterize protein expression profiles within cells, tissues, organisms, or body fluids. Characterizing specific post-translational modifications on proteins using MS of peptide fragments is difficult and labor-intensive. Recently, specific staining methods have been developed and merged into the 2-D gel platform so that not only general protein patterns but also patterns of phosphorylated and glycosylated proteins can be obtained. We used the new Pro-Q Diamond phosphoprotein dye technology for the fluorescent detection of phosphoproteins directly in 2-D gels of mouse leukocyte proteins, and Pro-Q Emerald 488 glycoprotein dye to detect glycoproteins. These two fluorescent stains are compatible with general protein stains, such as SYPRO Ruby stain. We devised a sequential procedure using Pro-Q Diamond (phosphoprotein), followed by Pro-Q Emerald 488 (glycoprotein), followed by SYPRO Ruby stain (general protein stain), and finally silver stain for total protein profile. This multiple staining of the proteins in a single gel provided parallel determination of protein expression and preliminary characterization of post-translational modifications of proteins in individual spots on 2-D gels. Although this method does not provide the same degree of certainty as traditional MS methods of characterizing post-translational modifications, it is much simpler, faster, and does not require sophisticated equipment and expertise in MS.  相似文献   

5.
Wang X  Hwang SY  Cong WT  Jin LT  Choi JK 《Electrophoresis》2010,31(23-24):3808-3815
In this study, we describe an effective visualizing technique for proteins in SDS-PAGE based on the organic dye, Eosin B, the sensitivity of which can be further strengthened by the addition of magnesium to the staining solution after electrophoresis. The newly developed protocol is low in cost and easily performed compared with the common methods for protein analysis in 1-D and 2-D gels. It provides a much better sensitivity (0.2 ng of single protein band) than that of imidazole-zinc negative stain for fixing and staining within 1 h, and an excellent performance in terms of compatibility with MALDI-TOF MS. The results show that similar identification scores and numbers of matched peptides were obtained by both methods. Furthermore, the effects of different metal salts on the quality of protein visualization by Eosin B were also investigated. Because of its sensitivity, stability, and safety, this stain may be a more practical method for protein determination in the routine laboratory.  相似文献   

6.
A simple and sensitive fluorescent staining method for the detection of proteins in SDS‐PAGE, namely IB (improved 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid) stain, is described. Non‐covalent hydrophobic probe 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid was applied as a fluorescent dye, which can bind to hydrophobic sites in proteins non‐specifically. As low as 1 ng of protein band can be detected briefly by 30 min washing followed by 15 min staining without the aiding of stop or destaining step. The sensitivity of the new presented protocol is similar to that of SYPRO Ruby, which has been widely accepted in proteomic research. Comparative analysis of the MS compatibility of IB stain and SYPRO Ruby stain allowed us to address that IB stain is compatible with the downstream of protein identification by PMF.  相似文献   

7.
Hong HY  Yoo GS  Choi JK 《Electrophoresis》2000,21(5):841-845
A sensitive staining method for protein blots using Direct Blue 71 is described. It is based on the selective binding of dye molecules to proteins in acidic solution and produces bluish violet colored bands. It is a simple and rapid procedure, involving only staining and rinsing steps that occur within 7 min. The sensitivity of this method is 5-10 ng of protein on nitrocellulose (NC) and 10-20 ng on polyvinylidene difluoride (PVDF), which is tenfold better than that of the commonly used Ponceau S staining. Moreover, the staining is reversible for subsequent immunostaining, without impairing immunoreactivity. To remove the dye from the developed bands, changes in pH and hydrophobicity of the solvent are required. Due to its sensitivity, rapidity, simplicity, and low cost, this stain may be more practical than other dye-based stains or metal-based stains for routine laboratory purposes.  相似文献   

8.
SYPRO Ruby IEF Protein Gel Stain is an ultrasensitive, luminescent stain optimized for the analysis of protein in isoelectric focusing gels. Proteins are stained in a ruthenium-containing metal complex overnight and then rinsed in distilled water for 2 h. Stained proteins can be excited by ultraviolet light of about 302 nm (UV-B transilluminator) or with visible light of about 470 nm. Fluorescence emission of the dye is maximal at approximately 610 nm. The sensitivity of the SYPRO Ruby IEF protein gel stain is superior to colloidal Coomassie blue stain and the highest sensitivity silver staining procedures available. The SYPRO Ruby IEF protein gel stain is suitable for staining proteins in nondenaturing or denaturing carrier ampholyte isoelectric focusing and immobilized pH gradient gel electrophoresis. The stain is compatible with N,N'-methylenebisacrylamide or piperazine diacylamide cross-linked polyacrylamide gels as well as with agarose gels and high tensile strength Duracryl gels. The stain does not contain extraneous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. Successful identification of stained proteins by peptide mass profiling is demonstrated.  相似文献   

9.
Pro-Q Emerald 488 glycoprotein stain reacts with periodic acid-oxidized carbohydrate groups, generating a bright green-fluorescent signal on glycoproteins. The stain permits detection of less than 5-18 ng of glycoprotein per band, depending upon the nature and the degree of protein glycosylation, making it roughly 8-16-fold more sensitive than the standard colorimetric periodic acid-Schiff base method using acidic fuchsin dye (pararosaniline). The green-fluorescent signal from Pro-Q Emerald 488 stain may optimally be visualized using charge-coupled device/xenon arc lamp-based imaging systems or 470-488 nm laser-based gel scanners. Though glycoprotein detection may be performed on transfer membranes, direct detection in gels avoids electroblotting and the specificity of staining is better in gels. After detecting glycoproteins with Pro-Q Emerald 488 dye, total protein profiles may subsequently be detected using SYPRO Ruby protein gel stain. Using computer-assisted registration techniques, images may then be merged to generate differential display maps.  相似文献   

10.
A modified Neuhoff's colloidal Coomassie Blue G-250 stain is reported, dubbed "blue silver" on account of its considerably higher sensitivity, approaching the one of conventional silver staining. The main modifications, as compared to Neuhoff's protocol, were: a 20% increment in dye concentration (from 0.1% up to 0.12%) and a much higher level of phosphoric acid in the recipe (from 2% up to 10%). The "blue silver" exhibits a much faster dye uptake (80% during the first hour of coloration, vs. none with a commercial preparation from Sigma). Even at equilibrium (24 h staining), the "blue silver" exhibits a much higher sensitivity than all other recipes, approaching (but lower than) the one of the classical silver stain. Measurements of stain sensitivity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of bovine serum albumin (BSA) gave a detection limit (signal-to-noise ratio > 3) of 1 ng in a single zone. The somewhat lower sensitivity of "blue silver" as compared to classical silvering protocols in the presence of aldehydes is amply compensated for by its full compatibility with mass spectrometry of eluted polypeptide chains, after a two-dimensional map analysis, thus confirming that no dye is covalently bound (or permanently modifies) to any residue in the proteinaceous material. It is believed that the higher level of phosphoric acid in the recipe, thus its lower final pH, helps in protonating the last dissociated residues of Asp and Glu in the polypeptide coils, thus greatly favoring ionic anchoring of dye molecules to the protein moiety. Such a binding, though, must be followed by considerable hydrophobic association with the aromatic and hydrophobic residues along the polypeptide backbone.  相似文献   

11.
The fluorescent sensitive SYPRO Red dye was successfully employed to stain proteins in two-dimensional gels for protein identification by peptide mass fingerprinting. Proteins which are not chemically modified during the SYPRO Red staining process are well digested enzymatically in the gel and hence the resulting peptides can be efficiently eluted and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A SYPRO Red two-dimensional gel of a complex protein extract from Candida albicans was analysed by MALDI-TOF MS. The validity of SYPRO Red staining was demonstrated by identifying, via peptide mass fingerprinting, 10 different C. albicans proteins from a total of 31 selected protein spots. The peptide mass signal intensity, the number of matched peptides and the percentage of coverage of protein sequences from SYPRO Red-stained proteins were similar to or greater than those obtained in parallel with the modified silver protein gel staining. This work demonstrates that fluorescent SYPRO Red staining is compatible with the identification of proteins separated on polyacrylamide gel and that it can be used as an alternative to silver staining. As far as we know, this is the first report in which C. albicans proteins separated using 2-D gels have been identified by peptide mass fingerprinting. The improved technique described here should be very useful for carrying out proteomic studies.  相似文献   

12.
A negative detection method for proteins on SDS‐PAGE is described. In this method, Eosin Y (EY) was selectively precipitated in the gel background, which is absent from those zones where proteins are located through the formation of a stable water‐soluble protein–dye complex. Negative staining of proteins using EY, allows high‐sensitivity, low‐cost, and simple protocol. The new described method takes less than an hour to complete all the protocol, with a detection limit of 0.5 ng of single protein band. Comparing with imidazole‐zinc negative stain, EY dye provides broader linear dynamic range, higher sensitivity and reproducibility, and better obvious contrast between the protein bands or spots and background. Furthermore, the novel technique developed here presented a real practical method for simultaneous processing of multiple gels, which makes it possible to perform high‐throughput staining for proteome research. Additionally, we have also compared the influence of staining method on the quality of mass spectra by PMF.  相似文献   

13.
A new formulation of the small-molecule organic fluorophore, Pro-Q Diamond dye, has been developed that permits rapid and simple detection of phosphoproteins directly on polyvinylidene difluoride (PVDF) or nitrocellulose membranes (electroblots). Protein samples are first separated by electrophoresis and then electroblotted to membranes, stained and destained, in an analogous manner as typically performed with Amido Black or Ponceau S dye staining of total protein profiles. After staining, blots are imaged using any of a variety of laser-based gel scanners, xenon-arc lamp-based gel scanners or charge-coupled device (CCD) camera-based imaging devices equipped with UV trans- or epi-illumination. The uncomplicated and reliable staining protocol delivers results in as little as 1 h and the limit of detection for the stain is typically 2-4 ng of phosphoprotein with a linear dynamic range of approximately 15-fold. Compared with traditional radiolabeling and antibody-based approaches, the new method offers significant advantages, including avoidance of radioactivity, no need for expensive antibodies, no requirement for blocking unoccupied sites on the membrane with protein or detergent solutions, no sequence context-specific binding to phosphorylated amino acid residues and the ability to analyze the native, steady-state phosphorylation of proteins obtained directly from tissue specimens or body fluids. Pro-Q Diamond dye binds directly and exclusively to the phosphate moiety, allowing it to detect the broadest spectrum of phosphorylated proteins possible. The stain binds noncovalently to phosphoproteins and is thus fully compatible with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) or Edman sequencing. The blot stain is also compatible with standard colorimetric, fluorogenic, and chemiluminescent detection techniques employed in immunoblotting.  相似文献   

14.
Visible stain is still the most popular protein staining method used in proteomic approaches. However, most published data have been derived from comparisons between visible dyes and fluorescent dyes. In this work, we have focused on seven widely used visible staining procedures—Neuhoff CCB, blue silver, and five silver stains (LKB SN, He SN, Yan SN, Vorum SN, and Blum SN)—and studied their stain efficiencies and MALDI-TOF MS compatibilities on 1-D and 2-D PAGE. It was concluded that blue silver is slightly better in terms of stain efficiency than Neuhoff CCB, but it presented worse MS compatibility. Neuhoff CCB presented better MS compatibility and superior linearity but worse sensitivity than silver stains. Among the five silvering procedures, He SN showed the best MS compatibility and a reasonable staining efficiency; Yan SN lowered the chances of obtaining the protein identity by PMF but gave the best stain efficiency; Vorum SN gave a very clear background and a great contrast, while Blum SN was the worst in this respect. The implications of these results for the selection of a convenient stain are discussed according to specific objectives as well as practical aspects.  相似文献   

15.
A 2-D native-PAGE/SDS-PAGE method for detecting the subunit components of protein oligomers at low picomole sensitivity is presented. IgG was electrophoresed in a native acidic polyacrylamide gel in amounts ranging from 51 pmol to 60 fmol. Silver-staining (native fast silver stain, ammoniacal silver stain, permanganate silver stain), Coomassie-staining (R-250, G-250), metal ion-reverse-staining (zinc, copper), and fluorescent chromophore-staining (SYPRO Ruby) methods were used to visualize the IgG oligomers. The protein zones were then excised, separated by SDS-PAGE, and subunits visualized with a permanganate silver stain. The Coomassie R-250/permanganate silver-staining combination detected IgG subunits using 2 pmol of sample. Coomassie G-250 and native fast silver staining in the first-dimensional gel produced detectable subunits in the second-dimensional separation at 3 and 13 pmol, respectively. Staining with silver (ammoniacal, permanganate), copper, zinc, or SYPRO Ruby in the first-dimensional gel did not produce discernible subunits in the second-dimensional gels due to protein streaking or protein immobilization in the native gel. When using a 2-D native-PAGE/SDS-PAGE system, Coomassie staining of the first-dimensional native gel combined with permanganate silver staining of the second-dimensional denaturing gel provides the most sensitive method (2-3 pmol) for visualizing constituent subunits from their oligomeric assemblies.  相似文献   

16.
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.  相似文献   

17.
As a noncovalent fluorescence probe, in this study, salicylaldehyde azine (SA) was introduced as a sensitive fluorescence‐based dye for detecting proteins both in 1D and 2D polyacrylamide electrophoresis gels. Down to 0.2 ng of single protein band could be detected within 1 h, which is similar to that of glutaraldehyde‐silver stain, but approximately four times higher than that of SYPRO Ruby fluorescent stain. Furthermore, comparative analysis of the MS compatibility of SA stain with SYPRO Ruby stain indicated that SA stain is compatible with the downstream of protein identification by LC‐MS/MS. Additionally, the probable mechanism of the SA stain was investigated by molecular docking. The results demonstrated that the interaction between SA and protein was mainly contributed by hydrogen bonding and hydrophobic forces.  相似文献   

18.
Silver staining, which exploits the special bioaffinity and the chromogenic reduction of silver ions, is an indispensable visualization method in biology. It is a most popular method for in‐gel protein detection. However, it is limited by run‐to‐run variability, background staining, inability for protein quantification, and limited compatibility with mass spectroscopic (MS) analysis; limitations that are largely attributed to the tricky chromogenic visualization. Herein, we reported a novel water‐soluble fluorogenic Ag+ probe, the sensing mechanism of which is based on an aggregation‐induced emission (AIE) process driven by tetrazolate‐Ag+ interactions. The fluorogenic sensing can substitute the chromogenic reaction, leading to a new fluorescence silver staining method. This new staining method offers sensitive detection of total proteins in polyacrylamide gels with a broad linear dynamic range and robust operations that rival the silver nitrate stain and the best fluorescent stains.  相似文献   

19.
This study elucidates the optimum conditions at the minimum cost for using SYPRO Ruby protein gel stain. It deals with the effects of gel fixation and staining times, as well as dilution and reuse of SYPRO Ruby protein gel stain in one-dimensional (1-D) gels. Signal strength and dynamic range were highest in gels that were fixed thoroughly before staining, followed by overnight staining. Using the optimized protocol, dilution or reuse of the stain reduces the dynamic range and signal intensity. Sensitivity remains high if the stain is reused up to two times, but signal intensity is reduced up to 2.5-fold in twice used stain. Sensitivity also remains high if the stain is diluted 1:2 in water, but signal intensity is reduced up to 6-fold. Of the two options, reuse or dilution, reuse better retains signal intensity and dynamic range.  相似文献   

20.
Yan JX  Harry RA  Spibey C  Dunn MJ 《Electrophoresis》2000,21(17):3657-3665
While the classical silver stain has been the method of choice for high sensitivity protein visualization on two-dimensional gel electrophoresis (2-D PAGE), post-electrophoretic fluorescent staining with the SYPRO group of dyes has emerged to challenge silver staining for proteome analysis. The latter offers improved sensitivity, higher dynamic range and easy handling. However, most of the published data were derived from analysis of 1-D gel separations. In this work, we have focused on three commercially available fluorescent dyes, SYPRO Ruby, SYPRO Orange and SYPRO Red (Molecular Probes, Eugene, OR, USA) and studied their sensitivity and dynamic range on 2-D PAGE. The use of a multiwavelength fluorescent scanner to image 2-D protein profiles visualized with fluorescent staining is discussed, and a detailed comparison with analysis by silver staining is also provided. These results demonstrate the advantages of using SYPRO dyes, which are in agreement with the literature based on 1-D gel electrophoresis, and give a more realistic understanding of the performance of these fluorescent dyes with 2-D PAGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号