首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Given Ω bounded open regular set of ${\mathbb{R}^2}$ , ${q_1,\ldots, q_K \in \Omega}$ , ${\varrho : \Omega \longrightarrow [0,+\infty)}$ a regular bounded function and ${V: \Omega \longrightarrow [0,+\infty)}$ a bounded fuction. We give a sufficient condition for the model problem $$(P):\qquad-{\Delta}u -{\lambda}\varrho(x)|{\nabla}u|^2 = \varepsilon^{2}V(x)e^u$$ to have a positive weak solution in Ω with u = 0 on ?Ω, which is singular at each q i as the parameters ${\varepsilon}$ and λ tend to 0, essentially when the set of concentration points q i and the set of zeros of V are not necessarily disjoint.  相似文献   

2.
Let ${\Omega\subset\mathbb{R}^n}$ be a bounded domain, and let 1 < p < ∞ and σ < p. We study the nonlinear singular integral equation $$ M[u](x) = f_0(x)\quad {\rm in}\,\Omega$$ with the boundary condition u = g 0 on ?Ω, where ${f_0\in C(\overline\Omega)}$ and ${g_0\in C(\partial\Omega)}$ are given functions and M is the singular integral operator given by $$M[u](x)={\rm p.v.} \int\limits_{B(0,\rho(x))} \frac{p-\sigma}{|z|^{n+\sigma}}|u(x+z)-u(x)|^{p-2} (u(x+z)-u(x))\,{\rm dz},$$ with some choice of ${\rho\in C(\overline\Omega)}$ having the property, 0 < ρ(x) ≤ dist (x, ?Ω). We establish the solvability (well-posedness) of this Dirichlet problem and the convergence uniform on ${\overline\Omega}$ , as σp, of the solution u σ of the Dirichlet problem to the solution u of the Dirichlet problem for the p-Laplace equation νΔ p u = f 0 in Ω with the Dirichlet condition u = g 0 on ?Ω, where the factor ν is a positive constant (see (7.2)).  相似文献   

3.
Given aself similar fractal K ? ? n of Hausdorff dimension α>n?2, andc 1>0, we give an easy and explicit construction, using the self similarity properties ofK, of a sequence of closed sets? h such that for every bounded open setΩ?? n and for everyf ∈ L2(Ω) the solutions to $$\left\{ \begin{gathered} - \Delta u_h = f in \Omega \backslash \varepsilon _h \hfill \\ u_h = 0 on \partial (\Omega \backslash \varepsilon _h ) \hfill \\ \end{gathered} \right.$$ converge to the solution of the relaxed Dirichlet boundary value problem $$\left\{ \begin{gathered} - \Delta u + uc_1 \mathcal{H}_{\left| K \right.}^\alpha = f in \Omega \hfill \\ u = 0 on \partial \Omega \hfill \\ \end{gathered} \right.$$ (H α denotes the restriction of the α-dimensional Hausdorff measure toK). The condition α>n?2 is strict.  相似文献   

4.
5.
Let Ω be some open subset of ?N containing 0 and Ω′=Ω?{0}. If g is a continuous function from ? × ? into ? satisfying some power like growth assumption, then any u∈L loc (Ω′) satisfying $$\begin{array}{*{20}c} { - div (Du \left| {Du} \right|^{p - 2} ) + g(.,u) = 0} & {in \mathcal{D}'(\Omega ')} \\ \end{array} $$ , remains bounded in Ω and satisfies the equation in D'(Ω). We give extensions when the singular set is some compact submanifold of Ω. When g is bounded below on ?+ and above on ??, then we prove that any subset Σ with 1-capacity zero is a removable singularity for a function u∈L loc (ω?Σ) satisfying $$\begin{array}{*{20}c} { - div \left( {\frac{{Du}}{{\sqrt {1 + \left| {Du} \right|^2 } }}} \right) + g(.,u) = 0} & {in \mathcal{D}'(\Omega - \Sigma )} \\ \end{array} $$ .  相似文献   

6.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

7.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

8.
We study regularity results for solutions uHW 1,p (Ω) to the obstacle problem $$\int_\Omega \mathcal{A} \left( {x,\nabla _{\mathbb{H}^u } } \right)\nabla _\mathbb{H} \left( {v - u} \right)dx \geqslant 0 \forall v \in \mathcal{K}_{\psi ,u} \left( \Omega \right)$$ such that u ? ψ a.e. in Ω, where $xxx$ , in Heisenberg groups ? n . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$\begin{gathered} T\psi \in HW_{loc}^{1,p} \left( \Omega \right) \Rightarrow Tu \in L_{loc}^p \left( \Omega \right), \hfill \\ \left| {\nabla _{\mathbb{H}\psi } } \right|^p \in L_{loc}^q \left( \Omega \right) \Rightarrow \left| {\nabla _{\mathbb{H}^u } } \right|^p \in L_{loc}^q \left( \Omega \right), \hfill \\ \end{gathered}$$ where 2 < p < 4, q > 1.  相似文献   

9.
In this paper we study the existence of solutions u \({{W}^{1,p}_{0}}\) (Ω) with △ p uL 2(Ω) for the Dirichlet problem 1 $$ \left\{ \begin{array} [c]{l}-\triangle_{p}u\left( x\right) \in-\partial{\Phi}\left( u\left( x\right) \right) +G\left( x,u\left( x\right) \right) ,x\in{\Omega},\\ u\mid_{\partial{\Omega}}=0, \end{array} \right. $$ where Ω ? R N is a bounded open set with boundary ?Ω, △ p stands for the p?Laplace differential operator, ?Φ denotes the subdifferential (in the sense of convex analysis) of a proper convex and lower semicontinuous function Φ and G : Ω × R → 2R is a multivalued map. We prove two existence results: the first one deals with the case where the multivalued map u ? G(x, u) is upper semicontinuous with closed convex values and the second one deals with the case when u ? G(x, u) is lower semicontinuous with closed (not necessarily convex) values.  相似文献   

10.
11.
Let ?? be a bounded domain in ${\mathbb{R}^{n}, n\geq2}$ . We use ${\mathcal{M}_{\Omega}}$ to denote the collection of all pairs of (A, u) such that ${A\subset\Omega}$ is a set of finite perimeter and ${u\in H^{1}\left( \Omega\right)}$ satisfies $$u\left( x\right) =0\quad\text{a.e.}x\in A.$$ We consider the energy functional $$E_{\Omega}\left( A,u\right) =\int\limits_{\Omega}\left\vert\triangledown u\right\vert ^{2}+P_{\Omega}\left( A\right)$$ defined on ${\mathcal{M}_{\Omega}}$ , where P ??(A) denotes the perimeter of A inside ??. Let ${\left( A,u\right)\in\mathcal{M}_{\Omega}}$ be a minimizer with volume constraint. Our main result is that when n????7, u is locally Lipschitz and the free boundary ?A is analytic in ??.  相似文献   

12.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

13.
We prove higher integrability and differentiability results for local minimizers u: ${\mathbb {R}^2\supset\Omega\to\mathbb {R}^M}$ , M ≥ 1, of the splitting-type energy ${\int_{\Omega}[h_1(|\partial_1 u|)+h_2(|\partial_2 u|)]\,{\rm d}x}$ . Here h 1, h 2 are rather general N-functions and no relation between h 1 and h 2 is required. The methods also apply to local minimizers u: ${\mathbb {R}^2\supset\Omega \to \mathbb {R}^2}$ of the functional ${\int_{\Omega}[h_1(|{\rm div}\,{\rm u}|)+h_2(|\varepsilon^D(u)|)]\,{\rm d}x}$ so that we can include some variants of so-called nonlinear Hencky-materials. Further extensions concern non-autonomous problems.  相似文献   

14.
We consider the following problem $$\left\{ \begin{array}{ll}-\Delta u = \mu |u|^\frac{4}{N-2}u + \frac{|u|^\frac{4-2s}{N-2}u}{|x|^{s}} + a(x)u, & x \in \Omega,\\ u=0, & {\rm on}\; \partial \Omega \end{array}\right.$$ where ${ \mu \ge 0, 0 < s < 2, 0 \in \partial \Omega}$ and Ω is a bounded domain in R N . We prove that if ${N \ge 7, a(0) > 0}$ and all the principle curvatures of at 0 are negative, then the above problem has infinitely many solutions.  相似文献   

15.
The paper deals with variational problems of the form $$\mathop {\inf }\limits_{u \in W^{1,p} (\Omega )} \int\limits_\Omega {a(\varepsilon ^{ - 1} x)(\left| {\nabla u} \right|^p + \left| {u - g} \right|^p )} dx,$$ where Ω is a bounded Lipschitzian domain in ? N , g∈Lp(Ω). The function a(x) is assumed to satisfy the following conditions:
  1. a(x) is periodic and lower semicontinuous;
  2. 0≤a(x)≤1 and the set {∈? N , a(x)>0} is connected in ? N Under these conditions, basic properties of homogenization (convergence of energies and generalized solutions) and properties of Г-convergence type are proved. Bibliography: 3 titles.
  相似文献   

16.
ПустьР - линейный диф ференциальный опера тор с достаточно гладкими коэффициентами. По определению,P явля ется оператором внут ренней регулярности на ω ?R n т огда и только тогда, когда \(u \in B_{p,k_{ - N} }^{loc} (\Omega )\) и ω′?ω из условия \(Pu \in B_{p,k_s }^{loc} (\Omega ')\) вытекает, что \(u \in B_{p,k_s k}^{loc} (\Omega ')\) , где ?N+1≦sN. Соотве тствующий пример: $$Pu = - \Delta u + u c k(\xi ) = \xi _1^2 + \ldots + \xi _n^2 + 1.$$ Указанные операторы характеризуются в ра боте в терминах априорных н еравенств. До? казывается также сущ ествование локальны х фундаментальных реш ений для оператора, со пряженного кP, а также его гладкос ть вне диагонали. Эти результаты являются аналогами соответствующих рез ультатов для гипоэлл иптических операторов.  相似文献   

17.
We consider the following anisotropic sinh-Poisson equation $${\rm div} (a(x) \nabla u)+ 2\varepsilon^2 a(x) {\rm sinh}\,u=0\ \ {\rm in}\ \Omega, \quad u=0 \ \ {\rm on}\ \partial \Omega,$$ where ${\Omega \subset \mathbb{R}^2}$ is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient ${a(x)}$ on the existence of bubbling solutions. We show that there exists a family of solutions u ?? concentrating positively and negatively at ${\bar{x}}$ , a given local critical point of a(x), for ?? sufficiently small, for which with the property $$2\varepsilon^2a(x){\rm sinh} u_\varepsilon \rightharpoonup 8\pi\sum\limits_{j=1}^{m}b_j\delta_{\bar{x}},$$ where ${b_j=\pm 1}$ . This result shows a striking difference with the isotropic case (a(x) ?? Constant) in Bartolucci and Pistoia (IMA J Appl Math 72(6):706?C729, 2007), Jost et?al. (Calc Var Partial Differ Equ 31:263?C276, 2008) and Esposito and Wei (Calc Var Partial Differ Equ 34:341?C375, 2009).  相似文献   

18.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

19.
In this paper, we establish the existence and concentration of solutions of a class of nonlinear Schr?dinger equation $$- \varepsilon ^2 \Delta u_\varepsilon + V\left( x \right)u_\varepsilon = K\left( x \right)\left| {u_\varepsilon } \right|^{p - 2} u_\varepsilon e^{\alpha _0 \left| {u_\varepsilon } \right|^\gamma } , u_\varepsilon > 0, u_\varepsilon \in H^1 \left( {\mathbb{R}^2 } \right),$$ where 2 < p < ∞, α 0 > 0, 0 < γ < 2. When the potential function V (x) decays at infinity like (1 + |x|)?α with 0 < α ≤ 2 and K(x) > 0 are permitted to be unbounded under some necessary restrictions, we will show that a positive H 1(?2)-solution u ? exists if it is assumed that the corresponding ground energy function G(ξ) of nonlinear Schr?dinger equation $- \Delta u + V\left( \xi \right)u = K\left( \xi \right)\left| u \right|^{p - 2} ue^{\alpha _0 \left| u \right|^\gamma }$ has local minimum points. Furthermore, the concentration property of u ? is also established as ? tends to zero.  相似文献   

20.
In this paper we extend the results of Brezis and Nirenberg in [4] to the problem $$\left\{ \begin{gathered} Lu = - D_i (a_{ij} (x)D_j u) = b(x)u^p + f(x,u) in\Omega , \hfill \\ p = (n + 2)/(n - 2) \hfill \\ u > 0 in\Omega , u = 0 \partial \Omega , \hfill \\ \end{gathered} \right.$$ whereL is a uniformly elliptic operator,b(x)≥0,f(x,u) is a lower order perturbation ofu p at infinity. The existence of solutions to (A) is strongly dependent on the behaviour ofa ij (x), b(x) andf(x, u). For example, for any bounded smooth domain Ω, we have \(a_{ij} \left( x \right) \in C\left( {\bar \Omega } \right)\) such thatLu=u p possesses a positive solution inH 0 1 (Ω). We also prove the existence of nonradial solutions to the problem ?Δu=f(|x|, u) in Ω,u>0 in Ωu=0 on ?Ω, Ω=B(0,1). for a class off(r, u).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号