首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the problem of the approximation of differential equations with delay by a system of ordinary differential equations. We analyze the qualitative behavior of solutions of the original system and the approximating system and construct an algorithm for the investigation of the stability of solutions of systems with delay.Translated from Neliniini Kolyvannya, Vol. 7, No. 2, pp. 208–216, April–June, 2004.  相似文献   

2.
We obtain a representation of a solution of the Cauchy problem for a linear inhomogeneous differential equation with constant coefficients and pure delay. We use special matrix functions called a delayed matrix sine and a delayed matrix cosine. They have the form of matrix polynomials of degree dependent on the value of delay. __________ Translated from Neliniini Kolyvannya, Vol. 11, No. 2, pp. 261–270, April–June, 2008.  相似文献   

3.
A mathematical model of the nonisothermal displacement of oil by water with allowance for solid-phase precipitation is proposed. Self-similar solutions of the problem of nonisothermal displacement of oil from a homogeneous, thermally insulated formation are obtained. The inverse problems of determining the relative phase permeabilities and the temperature dependence of the paraffin saturation concentration from laboratory displacement data are solved. Exact solutions of the non-self-similar problems of the displacement of high-paraffin oil by a slug of hot water and of the thermal delay problem are obtained. The nonisothermal displacement of high-paraffin oils by water with allowance for heat transfer to the surrounding strata is subjected to qualitative analysis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 126–137, May–June, 1989.The authors are grateful to A. K. Kurbanov and Yu. V. Kapyrin for useful discussions and their interest in the work.  相似文献   

4.
Algorithms for solving the problem of design of static output feedback controllers for stationary linear systems with continuous and discrete time are reviewed. The inverse problem is considered. The algorithms of synthesis of output feedback controllers are generalized to the case of a periodic discrete-time system. To solve such problems, it might be more natural to use an approach based on multi-criterion optimization. It is also shown that these algorithms can be used for the optimal stabilization of unstable systems with delay. In this connection, the parameters of a controller with given structure for a controlled unstable scalar system with delay are optimized. To this end, the system is first approximated by a system without delay, with the exponent approximated by a fractionally rational function. Since the structure of the controller is given, the quality of approximation is estimated as the difference (in the space of controller coefficients) between the stability domains of the original and approximating systems. At the next stage, the gain coefficients of the controller for the reduced system are optimized. The efficiency of the thus synthesized controller is assessed through mathematical modeling of a system with delay whose feedback loop is defined by the gain coefficients found. The approach is illustrated by stabilizing an inverted simple pendulum with a proportional–derivative controller with delay. The problem of synthesis of a robust controller for this example is considered. Some examples of designing a robust controller, including for a third-order system in which the delay rather than some parameter is uncertain are presented  相似文献   

5.
This paper considers local temperature variations near the tip of a crack in the presence of regions in which the crack faces interact. It is assumed that these regions are adjacent to the crack tip and are comparable in size to the crack size. The problem of local temperature variations consists of delay or retardation of crack growth. For a crack with connections between the crack faces subjected to external tensile loads, an induced thermoelastic stress field, and the stresses at the connections preventing crack opening, the boundary-value problem of the equilibrium of the crack reduces to a system of nonlinear singular integrodifferential equations with a Cauchy kernel. The normal and tangential stresses at the connections are found by solving this system of equations. The stress intensity factors are calculated. The energy characteristics of cracks with tip regions are considered. The limiting equilibrium condition for cracks with tip regions is formulated using the criterion of limiting stretching of the connections.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 133–143, January–February, 2005  相似文献   

6.
Three problems of two-phase flow through porous media are considered. In the first two flows in the region of near-critical saturations are investigated. Since under these conditions the active saturation and hence the phase permeability of one of the phases are small, it is important to take into account the delay in phase redistribution — such types of flow as nonlinear waves and localized structures become important. In the third problem it is assumed that the capillary jump is insignificant as compared with the phase pressures. It is shown that in this case localized structures may also occur.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 71–76, January–February, 1988.  相似文献   

7.
A robust SEIR epidemic disease model with a profitless delay and verti- cal transmission is formulated,and the dynamics behaviors of the model under pulse vaccination are analyzed.By use of the discrete dynamical system determined by the stroboscopic map,an‘infection-free’periodic solution is obtained,further,it is shown that the‘infection-free’periodic solution is globally attractive when some parameters of the model are under appropriate conditions.Using the theory on delay functional and impulsive differential equatibn,the sufficient condition with time delay for the perma- nence of the system is obtained,and it is proved that time delays,pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is‘profitless’.  相似文献   

8.
A model of the physico-chemical kinetics of the reactions taking place behind the front of an intense shock wave propagating in air with a speed of 9–14 km/s is proposed. The problem of describing the chemical reactions, namely, molecular dissociation and exchange reactions involving vibrationally excited molecules in the absence of vibrational equilibrium, is solved. The vital role of the vibrational excitation delay in the dissociation of oxygen and nitrogen is established. The rate of the exchange reaction between nitrogen molecules and oxygen atoms in the shock wave depends only slightly on the vibrational excitation level. It is demonstrated that the rate constants for thermally nonequilibrium dissociation reactions can be represented within the framework of the one-temperature approximation at constant vibrational temperatures of the dissociating species satisfying quasi-stationary conditions.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 169–182, March–April, 1995.  相似文献   

9.

In this note, a partial pole assignment approach is presented for second-order systems with time delay. The method uses the versatile system receptance for designing state-feedback, rank-one controllers for second-order systems with time delay in the measurements or actuation. The stability of the closed-loop system is pursued throughout an optimization problem formulated with basis on the classical frequency domain technique known as the Nyquist stability criterion. Besides the partial pole assignment, robustness measured in terms of phase and gain margins can be achieved using a genetic algorithm to solve the optimization problem. The proposed approach is shown to provide effective solutions for systems with different time delays in the measurements of displacements and velocities, and with singular mass matrix. Numerical examples are presented to illustrate the benefits of the approach.

  相似文献   

10.
It is well-known that wave-type equations with memory, under appropriate assumptions on the memory kernel, are uniformly exponentially stable. On the other hand, time delay effects may destroy this behavior. Here, we consider the stabilization problem for second-order evolution equations with memory and intermittent delay feedback. We show that, under suitable assumptions involving the delay feedback coefficient and the memory kernel, asymptotic or exponential stability are still preserved. In particular, asymptotic stability is guaranteed if the delay feedback coefficient belongs to \(L^1(0, +{\infty })\) and the time intervals where the delay feedback is off are sufficiently large.  相似文献   

11.
The optimization of the parameters of a controller of given structure for a controlled unstable scalar system with delay is studied. First, the original system with delay is approximated by a system without delay. To this end, the exponent is approximated by a fractional rational function. Since the structure of the controller is fixed, the quality of the approximation is assessed by comparing the stability domains of the original and approximating systems (in the space of controller coefficients). Next, the coefficients of the controller for the reduced system are optimized. The performance of the controller thus synthesized can be assessed by mathematically modeling the original system (with delay) whose feedback is determined by the controller coefficients found. The approach is exemplified by stabilizing an inverted mathematical pendulum with a PD controller. This example is used to examine the issue of synthesis of a robust controller __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 10, pp. 86–100, October 2008.  相似文献   

12.
We implement the method of multiple scales to investigate primary resonances of a weakly nonlinear second-order delay system with cubic nonlinearities. In contrast to previous studies where the implementation is confined to the assumption of linear delay terms with small coefficients (Hu et al. in Nonlinear Dyn. 15:311, 1998; Ji and Leung in Nonlinear Dyn. 253:985, 2002), in this effort, we propose a modified approach which alleviates that assumption and permits treating a problem with arbitrarily large gains. The modified approach lumps the delay state into unknown linear damping and stiffness terms that are functions of the gain and delay. These unknown functions are determined by enforcing the linear part of the steady-state solution acquired via the method of multiple scales to match that obtained directly by solving the forced linear problem. We examine the validity of the modified procedure by comparing its results to solutions obtained via a harmonic balance approach. Several examples are discussed demonstrating the ability of the proposed methodology to predict the amplitude, softening-hardening characteristics, and stability of the resulting steady-state responses. Analytical results also reveal that the system can exhibit responses with different nonlinear characteristics near its multiple delay frequencies.  相似文献   

13.
The paper presents analytical and numerical studies of the primary resonance and the 1/3 subharmonic resonance of a harmonically forced Duffing oscillator under state feedback control with a time delay. By using the method of multiple scales, the first order approximations of the resonances are derived and the effect of time delay on the resonances is analyzed. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. In order to numerically solve the problem of history dependence prior to the start of excitation, the concepts of the Poincaré section and fixed points are generalized. Then, a modified shooting scheme associated with the path following technique is proposed to locate the periodic motion of the delayed system. The numerical results show the efficacy of the first order approximations of the resonances.  相似文献   

14.
A global asymptotic stability problem of cellular neural networks with delay is investigated.A new stability condition is presented based on the Lyapunov-Krasovskii method,which is dependent on the amount of delay.A result is given in the form ofa linear matrix inequdlity,and the admitted upper bound of the delay can be easily obtained.The time delay dependent and independent results can be obtained,which include flome previously published resultS.A numerical example is given to show the effectiveness of the main results.  相似文献   

15.
This paper presents a new technique using a recurrent non-singleton type-2 sequential fuzzy neural network (RNT2SFNN) for synchronization of the fractional-order chaotic systems with time-varying delay and uncertain dynamics. The consequent parameters of the proposed RNT2SFNN are learned based on the Lyapunov–Krasovskii stability analysis. The proposed control method is used to synchronize two non-identical and identical fractional-order chaotic systems, with time-varying delay. Also, to demonstrate the performance of the proposed control method, in the other practical applications, the proposed controller is applied to synchronize the master–slave bilateral teleoperation problem with time-varying delay. Simulation results show that the proposed control scenario results in good performance in the presence of external disturbance, unknown functions in the dynamics of the system and also time-varying delay in the control signal and the dynamics of system. Finally, the effectiveness of proposed RNT2SFNN is verified by a nonlinear identification problem and its performance is compared with other well-known neural networks.  相似文献   

16.
A global asymptotic stability problem of cellular neural networks with delay is investigated. A new stability condition is presented based on the Lyapunov-Krasovskii method, which is dependent on the amount of delay. A result is given in the form of a linear matrix inequality, and the admitted upper bound of the delay can be easily obtained. The time delay dependent and independent results can be obtained, which include some previously published results. A numerical example is given to show the effectiveness of the main results.  相似文献   

17.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

18.
It is an important issue to estimate parameters of chaotic systems in nonlinear science. In this paper, delay time as well as parameters of time-delay chaotic system is considered by treating delay time as an additional parameter. The parameter estimation problem is formulated as a multidimensional optimization problem, and an effective hybrid biogeography-based optimization is developed to solve this problem. Numerical simulations are conducted on two typical time-delay chaotic systems to show the effectiveness of the proposed scheme.  相似文献   

19.
We establish consistency conditions for systems of linear differential equations with constant delay of neutral type and restrictions. The applicability of the projection-iterative method to these problems is justified. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 4, pp. 564–573, October–December, 2006.  相似文献   

20.
We prove an approximation result for the solutions of a singularly perturbed, nonautonomous ordinary differential equation which has interesting applications to problems in higher dimensions. Here our result is applied to a singularly perturbed, delay differential equation with state dependent time-lags (i.e., aninfinite dimensional problem). We find a new dynamical system (also in infinite dimensions), which describes, in a certain sense, the dynamics of our delay equations for very small values of the singular parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号