首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An otitis media with effusion model in human temporal bones with two laser vibrometers was created in this study. By measuring the displacement of the stapes from the medial side of the footplate, the transfer function of the middle ear, which is defined as the displacement transmission ratio (DTR) of the tympanic membrane to footplate, was derived under different middle ear pressure and fluid in the cavity with a correction factor for cochlear load. The results suggest that the DTR increases with increasing frequency up to 4k Hz when the middle ear pressure was changing from 0 to 20 or -20 cm H20 (e.g., +/-196 daPa) and fluid level was increasing from 0 to a full middle ear cavity. The positive and negative pressures show different effects on the DTR. The effect of fluid on DTR varies between three frequency ranges: f < 1k, between 1k and 4k, and f > 4k Hz. These findings show how the efficiency of the middle ear system for sound transmission changes during the presence of fluid in the cavity and variations of middle ear pressure.  相似文献   

2.
In this paper, a newly constructed three-dimensional finite element (FE) model of the human ear based on histological sections of a left ear temporal bone is reported. The otitis media with effusion was simulated in the model with variable fluid levels in the middle ear. The interfaces among the air, structure, and fluid in the ear canal and middle ear cavity were identified and the acoustic-structure-fluid coupled FE analysis was conducted when the middle ear fluid level was varied from zero to full fill of the cavity. The results show how the displacements of the tympanic membrane and stapes footplate or the middle ear transfer function is affected by fluid in the cavity across the auditory frequencies. Comparison of model results with measured data in temporal bones indicates that this model has the capability to extend FE analysis into pathological ears such as otitis media with visualized fluid-air interfaces inside the middle ear structures.  相似文献   

3.
In this study, a three-dimensional finite-element model (FEM) of the human middle ear was established, including features of the middle ear which were not considered in the previous model, i.e., the ligaments, tendons, I-S joint, loading of the cochlea, external auditory meatus (EAM), middle-ear cavities, etc. The unknown mechanical properties of these parts and the boundary conditions were determined so that the impedance obtained from the FEM analysis resembled the measurement values. The validity of this model was confirmed by comparing the motion of the tympanic membrane and ossicles obtained by this model with the measurement data, and the effects of the newly considered features on the numerically obtained results were examined. By taking the ligaments and tendons into account and assuming that the cochlea acts as a damper, with this model it was possible to realistically reproduce complex ossicular chain movement. It was found that the middle-ear cavities did not affect the vibration mode of the tympanic membrane. Although the EAM enhanced the sound pressure applied to the tympanic membrane compared with that at the entrance of the EAM, the pressure distribution on the surface of the tympanic membrane was not affected by the EAM.  相似文献   

4.
In this paper, an analytical model of the tympanic membrane is introduced where the two-dimensional tympanic membrane is reduced to a one-dimensional string. It is intended to bridge the gap between lumped-element models and finite-element models. In contrast to known lumped-element models, the model takes the distributed effect of the sound field on the tympanic membrane into account. Compared to finite-element models, it retains the advantage of a low number of parameters. The model is adjusted to forward and reverse transfer functions of the guinea-pig middle ear. Although the fitting to experimental data is not perfect, important conclusions can be drawn. For instance, the model shows that the delay of surface waves on the tympanic membrane can be different from the signal transmission delay of the tympanic membrane. In a similar vein, the standing wave ratio on the tympanic membrane and within the ear canal can considerably differ. Further, the model shows that even in a low-loss tympanic membrane the effective area, which commonly is associated with the transformer ratio in a lumped-element and some hybrid circuit models, not only is frequency-dependent, but also different for forward and reverse transduction.  相似文献   

5.
Chen CK  Wan YL  Tsui PH  Chiu WT  Jui F 《Ultrasonics》2012,52(5):663-667
The objective of this study is to explore the feasibility of using ultrasound to detect mastoid effusion (ME). In the past, ultrasound has been used to measure middle ear effusion (MEE) by injecting water into the external ear canal to measure echoes from the tympanic membrane, which is uncomfortable for the patient. It has been shown that air cells in the mastoid of patients with MEE are filled with fluid, which implies that ME could be a useful indicator of MEE. This study suggests using ultrasound to detect ME as a potentially noninvasive approach for MEE detection. In vitro experiments were performed on ten cadaver samples of the human ear. A single-element 1 MHz transducer was used to measure the mastoid of each cadaver before and after injecting water into the mastoid. The experimental results showed that the relative amplitudes of ultrasonic signals differed significantly between before (0.24 ± 0.09, mean ± standard deviation) and after (0.15 ± 0.03) the water injection (p < 0.05, t-test), demonstrating that the ultrasonic reflection can be used to detect ME. The location of the human mastoid under the skin behind the ear allows external measurements, and hence ultrasound-based ME detection may be an alternative, noninvasive diagnostic approach to detecting MEE in the future, providing an examination that avoids discomfort.  相似文献   

6.
Drive pressure to stapes velocity (V(st)) transfer function measurements are collected and compared for human cadaveric temporal bones with the drive pressure alternately on the ear canal (EC) and middle ear cavity (MEC) sides of the tympanic membrane (TM), in order to predict the performance of proposed middle-ear implantable acoustic hearing aids, as well as provide additional data for examining human middle ear mechanics. The chief finding is that, in terms of the V(st) response, MEC stimulation performs at least as well as EC stimulation below 8 kHz, provided that the EC is unplugged. Plugging the EC causes a reduced response for MEC drive below 2 kHz, due to a corresponding reduction of the pressure difference between the two sides of the TM. Between 8 and 11 kHz, the MEC drive transfer functions feature an approximately 17 dB drop in magnitude below the EC drive case, the cause of which remains unknown. The EC drive transfer functions reported here feature significantly less magnitude roll-off above 1 kHz than previous studies [with a slope of -2.3 vs -6.7 dB/octave for Aibara et al., Hear. Res. 152, 100-109 (2001)], and significantly more phase group delay (134 vs 62 micros for Aibara et al.).  相似文献   

7.
A finite-element analysis for static behavior of middle ear under variation of the middle-ear pressure was conducted in a 3D model of human ear by combining the hyperelastic Mooney-Rivlin material model and geometry nonlinearity. An empirical formula was then developed to calculate material parameters of the middle-ear soft tissues as the stress-dependent elastic modulus relative to the middle-ear pressure. Dynamic behavior of the middle ear in response to sound pressure in the ear canal was predicted under various positive and negative middle-ear pressures. The results from static analysis indicate that a positive middle ear pressure produces the static displacements of the tympanic membrane (TM) and footplate more than a negative pressure. The dynamic analysis shows that the reductions of the TM and footplate vibration magnitudes under positive middle-ear pressure are mainly determined by stress dependence of elastic modulus. The reduction of the TM and footplate vibrations under negative pressure was caused by both the geometry changes of middle-ear structures and the stress dependence of elastic modulus.  相似文献   

8.
Using a combination of in vivo computerized tomography and histological staining, a middle ear anomaly in two wild-caught American bullfrogs (Rana catesbeiana) is characterized. In these animals, the tympanic membrane, extrastapes, and pars media (shaft) of the stapes are absent on one side of the head, with the other side exhibiting normal morphology. The pars interna (footplate) of the stapes and the operculum are present in their normal positions at the entrance of the otic capsule on both the affected and unaffected sides. The pattern of deformity suggests a partial failure of development of tympanic pathway tissues, but with a preservation of the opercularis pathway. While a definitive proximate cause of the condition could not be determined, the anomalies show similarities to developmental defects in mammalian middle ear formation.  相似文献   

9.
In order to better understand signal propagation in the ear, a time-domain model of the tympanic membrane (TM) and of the ossicular chain (OC) is derived for the cat. Ossicles are represented by a two-port network and the TM is discretized into a series of transmission lines, each one characterized by its own delay and reflection coefficient. Volume velocity samples are distributed along the ear canal, the eardrum, and the middle ear, and are updated periodically to simulate wave propagation. The interest of the study resides in its time-domain implementation--while most previous related works remain in the frequency domain--which provides not only a direct observation of the propagating wave at each location, but also insight about how the wave behaves at the ear canal/TM interface. The model is designed to match a typical impedance behavior and is compared to previously published measurements of the middle ear (the canal, the TM, the ossicles and the annular ligament). The model matches the experimental data up to 15 kHz.  相似文献   

10.
The function of the middle ear is to transfer acoustic energy from the ear canal to the cochlea. An essential component of this system is the tympanic membrane. In this paper, a new finite element model of the middle ear of the domestic cat is presented, generated in part from cadaver anatomy via microcomputed tomographic imaging. This model includes a layered composite model of the eardrum, fully coupled with the acoustics in the ear canal and middle-ear cavities. Obtaining the frequency response from 100 Hz to 20 kHz is a computationally challenging task, which has been accomplished by using a new adaptive implementation of the reduced-order matrix Padé-via-Lanczos algorithm. The results are compared to established physiological data. The fully coupled model is applied to study the role of the collagen fiber sublayers of the eardrum and to investigate the relationship between the structure of the middle-ear cavities and its function. Three applications of this model are presented, demonstrating the shift in the middle-ear resonance due to the presence of the septum that divides the middle-ear cavity space, the significance of the radial fiber layer on high frequency transmission, and the importance of the transverse shear modulus in the eardrum microstructure.  相似文献   

11.
Quantitative studies of the mechanical properties of tympanic membrane (TM) are needed for better understanding of its role in detailed clinical evaluation, its research being of extreme importance because it is one of the most important structures of the middle ear. By finding the membrane's vibration patterns and quantifying the induced displacement it is possible to characterize and determine its physiological status. Digital holographic interferometry (DHI) has proved to be a reliable optical non-invasive and full-field-of-view technique for the investigation of different mechanical parameters of biological tissues, i.e., DHI has demonstrated an ability to detect displacement changes in quasi-real time and without the need to contact the sample's surface under study providing relevant information, such as clinical and mechanical sample properties. In this research fresh tympanic membrane specimens taken from post-mortem cats are subjected to acoustic stimuli in the audible frequency range producing resonant vibration patterns on the membrane, a feature that results in an ideal application for DHI. An important feature of this approach over other techniques previously used to study the tympanic membrane vibrations is that it only requires two images and less hardware to carry out the measurements, making of DHI a simpler and faster technique as compared to other proposed approaches. The results found show a very good agreement between the present and past measurements from previous research work, showing that DHI is a technique that no doubt will help to improve the understanding of the tympanic membrane's working mechanisms.  相似文献   

12.
Model calculations presented in this article show that commonly used methodology of15N relaxation data analysis completely fails in detecting nanosecond time scale motions if the major part of the molecule is involved in these motions. New criteria are introduced for the detection of such cases, based on the dependence of the apparent overall correlation time, derived from theT1/T2ratio, on the spectrometer frequency. Correctly estimating the overall rotation correlation time τRwas shown to play the key role in model-free data analysis. It is found, however, that in cases of slow internal motions with characteristic times of more than 3–4 ns, the effective τRprovided by theT1/T2ratio for individual amide nitrogens can be used for the characterization of the fast picosecond internal dynamics.  相似文献   

13.
For 23 cadaver ears from Norwegian cattle, frequency characteristics for the round-window volume displacement relative to the sound pressure at the eardrum have been measured, and are compared to earlier results for human ears [M. Kringlebotn and T. Gundersen, J. Acoust. Soc. Am. 77(1), 159-164 (1985)]. For human as well as for cattle ears, mean amplitude curves have peaks at about 0.7 kHz. At lower frequencies, the mean amplitude for cattle ears is about 5 dB smaller than for human ears. The amplitude curves cross at about 2 kHz, and toward higher frequencies the amplitude for cattle ears becomes increasingly larger. If amplitude curves are roughly approximated by straight lines above 1 kHz, the slope for cattle ears is about -5 dB/octave as compared to about -15 dB/octave for human ears. The phase of the round-window volume displacement lags behind the phase of the sound pressure at the tympanic membrane. The phase lag is close to zero below 0.2 kHz, but increases to about 3.5 pi at 20 kHz for cattle ears, as compared to less than 2 pi for human ears. Further investigations are needed in order to explain the observed differences. Sound transmission in the ear decreases with an increasing static pressure difference across the tympanic membrane, especially at frequencies below 1 kHz, where pressure differences of 10 and 60 cm water cause mean transmission losses of about 10 and 26 dB, respectively, the losses being somewhat larger for overpressures than for underpressures in the ear canal. At higher frequencies, the transmission losses are smaller. For small overpressures, and in a limited frequency range near 3 kHz, even some transmission enhancement may occur. Static pressure variations in the inner ear have only a minor influence on sound transmission. Static pressures relative to the middle ear in the range 0-60 cm water cause mean sound transmission losses less than 5 dB below 1 kHz, and negligible losses at higher frequencies.  相似文献   

14.
Applying the general-purpose finite-element package program (ISAP), a three-dimensional finite-element method (FEM) model of a human right middle ear, which included ossicles, was made and the mechanical properties and boundary conditions of the middle ear were determined by a comparison between the numerical results obtained from the FEM analysis and the measurement results of the fresh cadavers, normal subjects and patients, which were obtained by our developed sweep frequency middle ear analyzer (MEA). The "Elastic" boundary condition consisting of linear and torsional springs at the eardrum attachments to the annular ligament was more appropriate for the actual condition than "fully clamped" one. Rotational axis of the ossicular chain was assumed to be a fixed straight line from the anterior process of the malleus to the short process of the incus, and a load of the ossicular chain and cochlea was simplified to be expressed by the stiffness of the cochlea. Vibration patterns of the eardrum and ossicles at the first resonance frequency, obtained under these assumptions, were in agreement with the experimental results obtained by means of time-averaged holography and by using a video measuring system, except for the relatively large displacements at the tympanic ring.  相似文献   

15.
An attempt is made to develop a new measuring apparatus, and the dynamical characteristics of the middle ear of normal subjects and patients are measured with this apparatus. Applying the impedance theory of the tube to the external auditory canal, the aditus, and the tympanic and mastoid cavities, and applying the energy method to the eardrum and the ossicular chain, the equation of the middle ear, corresponding to the output of the apparatus and including the pressure difference effect upon the eardrum, is obtained. The numerical results are compared with the measurement results, and the effects of each part of the middle ear upon its dynamical characteristics are clarified. The great dependence of the dynamical characteristics of the middle ear upon the external auditory canal pressure is mainly caused by the pressure-dependent ossicular chain angular stiffness. The clearly different measurement results of the ossicular chain disorder patients from those of the normal subjects are obtainable by this apparatus, and these characteristics can be explained theoretically.  相似文献   

16.
A theoretical model of sound propagation in the ear canal is described, which takes into account both the complicated geometry of real ear canals and the distributed acoustical load presented by the eardrum. The geometry of the ear canal enters the theory in the form of a cross-sectional area function relative to a curved axis that follows the center of the ear canal. The tympanic membrane forms part of the ear canal wall and absorbs acoustical energy over its surface. Its motion leads to a driving term that must be added to the horn equation describing the pressure distribution in the ear canal. The sound field within the canal is assumed to be effectively one dimensional, depending only on longitudinal position along the canal. Experiments using model ear canals of uniform cross section were performed to test the ability of the theory to handle distributed loads. Sound-pressure distributions within each model canal were measured using a probe microphone. The behavior of the eardrum was simulated using either a distributed, locally reacting impedance or a mechanically driven piston. The agreement between theory and experiment is good up to a nominal upper frequency limit at which the ratio of canal width to wavelength is 0.25. It is estimated that the theory is applicable in ear canals of cats for frequencies at least as high as 25 kHz and in human ear canals to at least 15 kHz.  相似文献   

17.
After deriving the projected stress tensor in cylindrical geometry for a fluid membrane described by the Helfrich Hamiltonian, we calculate the average force f exerted by a thermally fluctuating nanotubule of radius R , and its standard deviation f . We obtain f and f in terms of the internal membrane tension , the bending rigidity , the temperature k B T and a molecular cutoff . We find for f a shift ∼ 1/ with respect to the mean field behavior ∼ . We obtain ( f )2R ln(R/b) where b is a molecular length, f being typically small compared to f . Taking into account the difference between the internal tension and the actual mechanical tension applied to the membrane from which the tubule is drawn, we discuss the amplitude of the fluctuation-induced corrections to the average force. Our results, obtained in the harmonic approximation, hold for tubules with aspect ratio not larger than 200 , of radius significantly smaller than 100nm, that are connected to a large membrane reservoir, e.g., a giant vesicle.  相似文献   

18.
Sound pressure was mapped in the bony ear canal of gerbils during closed-field sound stimulation at frequencies from 0.1 to 80 kHz. A 1.27-mm-diam probe-tube microphone or a 0.17-mm-diam fiber-optic miniature microphone was positioned along approximately longitudinal trajectories within the 2.3-mm-diam ear canal. Substantial spatial variations in sound pressure, sharp minima in magnitude, and half-cycle phase changes occurred at frequencies >30 kHz. The sound frequencies of these transitions increased with decreasing distance from the tympanic membrane (TM). Sound pressure measured orthogonally across the surface of the TM showed only small variations at frequencies below 60 kHz. Hence, the ear canal sound field can be described fairly well as a one-dimensional standing wave pattern. Ear-canal power reflectance estimated from longitudinal spatial variations was roughly constant at 0.2-0.5 at frequencies between 30 and 45 kHz. In contrast, reflectance increased at higher frequencies to at least 0.8 above 60 kHz. Sound pressure was also mapped in a microphone-terminated uniform tube-an "artificial ear." Comparison with ear canal sound fields suggests that an artificial ear or "artificial cavity calibration" technique may underestimate the in situ sound pressure by 5-15 dB between 40 and 60 kHz.  相似文献   

19.
The ear canal sound pressure and the malleus umbo velocity with bone conduction (BC) stimulation were measured in nine ears from five cadaver heads in the frequency range 0.1 to 10 kHz. The measurements were conducted with both open and occluded ear canals, before and after resection of the lower jaw, in a canal with the cartilage and soft tissues removed, and with the tympanic membrane (TM) removed. The sound pressure was about 10 dB greater in an intact ear canal than when the cartilage part of the canal had been removed. The occlusion effect was close to 20 dB for the low frequencies in an intact ear canal; this effect diminished with sectioning of the canal. At higher frequencies, the resonance properties of the ear canal determined the effect of occluding the ear canal. Sectioning of the lower jaw did not significantly alter the sound pressure in the ear canal. The sound radiated from the TM into the ear canal was investigated in four temporal bone specimens; this sound is significantly lower than the sound pressure in an intact ear canal with BC stimulation. The malleus umbo velocity with air conduction stimulation was investigated in nine temporal bone specimens and compared with the umbo velocity obtained with BC stimulation in the cadaver heads. The results show that for a normal open ear canal, the sound pressure in the ear canal with BC stimulation is not significant for BC hearing. At threshold levels and for frequencies below 2 kHz, the sound in the ear canal caused by BC stimulation is about 10 dB lower than air conduction hearing thresholds; this difference increases at higher frequencies. However, with the ear canal occluded, BC hearing is dominated by the sound pressure in the outer ear canal for frequencies between 0.4 and 1.2 kHz.  相似文献   

20.
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 µm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号