首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this article, the effect of spray solvent on the analysis of selected lipids including fatty acids, fat‐soluble vitamins, triacylglycerols, steroids, phospholipids, and sphingolipids has been studied by two different ambient mass spectrometry (MS) methods, desorption electrospray ionization‐MS (DESI‐MS) and desorption atmospheric pressure photoionization‐MS (DAPPI‐MS). The ionization of the lipids with DESI and DAPPI was strongly dependent on the spray solvent. In most cases, the lipids were detected as protonated or deprotonated molecules; however, other ions were also formed, such as adduct ions (in DESI), [M‐H]+ ions (in DESI and DAPPI), radical ions (in DAPPI), and abundant oxidation products (in DESI and DAPPI). DAPPI provided efficient desorption and ionization for neutral and less polar as well as for ionic lipids but caused extensive fragmentation for larger and more labile compounds because of a thermal desorption process. DESI was more suitable for the analysis of the large and labile lipids, but the ionization efficiency for less polar lipids was poor. Both methods were successfully applied to the direct analysis of lipids from pharmaceutical and food products. Although DESI and DAPPI provide efficient analysis of lipids, the multiple and largely unpredictable ionization reactions may set challenges for routine lipid analysis with these methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Sonic spray ionization is shown to create a supersonic cloud of charged droplets able to promote efficient desorption and ionization of drugs directly from the surfaces of commercial drug tablets at ambient conditions. Compared with desorption electrospray ionization (DESI), desorption sonic spray ionization (DeSSI) is advantageous since it uses neither heating nor high voltages at the spray capillary. DeSSI therefore provides a more friendly environment in which to perform ambient mass spectrometry (MS). DeSSI-MS is herein evaluated for the analysis of drug tablets, and found to be, in general, as sensitive as DESI-MS. The (high) voltage-free DeSSI method provides, however, cleaner mass spectra with less abundant solvent cluster ions and with enough abundant analyte signal for tandem mass spectrometry (MS/MS). These features may therefore facilitate the DeSSI-MS detection of low molar mass components or impurities, or both. The higher-velocity supersonic DeSSI spray also facilitates matrix penetration thus providing more homogenous sampling and longer lasting ion signals.  相似文献   

3.
The N,N‐dimethylaniline (DMA) radical cation DMA.+, a long‐sought transient intermediate, was detected by mass spectrometry (MS) during the electrochemical oxidation of DMA. This was accomplished by coupling desorption electrospray ionization (DESI) MS with a waterwheel working electrode setup to sample the surface of the working electrode during electrochemical analysis. This study clearly shows that DESI‐based electrochemical MS is capable of capturing electrochemically generated intermediates with half‐lives on the order of microseconds, which is 4–5 orders of magnitude faster than previously reported electrochemical mass spectrometry techniques.  相似文献   

4.
Recently, 3‐nitrobenzonitrile (3‐NBN) has been used to improve sensitivity of sonic‐spray ionization mass spectrometry. Easy ambient sonic‐spray ionization (EASI) is one of the simplest, gentlest and most used spray‐based desorption/ionization ambient techniques, but limited sensitivity has been commonly taken as its major drawback. Herein we investigate the use of 3‐NBN as a dopant in EASI‐MS for improved sensitivity. Using a few typical EASI samples as test cases, the presence of 10 ppm (µg ml?1) of 3‐NBN in the spray solvent showed two to fourfold gains in EASI‐MS sensitivity as measured both by total ion current and S/N ratios, accompanied with significant reductions in chemical noise. Sensitivity for DESI using 3‐NBN as a dopant also improved and dopant DESI versus dopant EASI sensitivities were compared. The use of solvent dopants seems therefore to be a promising strategy to improve sensitivity for spray‐based ambient MS techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report the first coupling of a desorption electrospray ionization (DESI) ion source to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) for high-resolution protein analysis. The DESI FT-ICR-MS source design is described in detail along with preliminary data obtained on peptides and proteins ranging from 1 to 5.7 kDa.  相似文献   

6.
Desorption electrospray ionization mass spectrometry (DESI‐MS) and easy ambient sonic‐spray ionization mass spectrometry (EASI‐MS) are employed here in the forensic analysis of chemical compounds found in condoms and relative traces, and their analytical performances are compared. Statistical analysis of data obtained from mass spectra only was applied in order to obtain classification rules for distinguishing ten types of condoms. In particular, two supervised chemometric techniques [linear discriminant analysis (LDA) and soft independent modeling of class analogy (SIMCA)] were carried out on absolute and relative intensity values to test the performances of statistical models in terms of predictive capacity. The achieved classification of samples was excellent because of the high prediction percentages of the method used both for DESI and EASI mass spectrometry analyses, confirming these two as potential ambient ionization techniques for forensic analyses in case of sexual assault crimes. EASI‐MS showed 99% prediction ability for LDA using relative data and 100% prediction ability for SIMCA using both absolute and relative ones, while DESI showed 94% prediction ability for both LDA and SIMCA. The absence of any sample preparation technique gives advantages in terms of sample preservation and reduced contamination, allowing successive analyses to be performed on the same sample by other techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Reactive desorption electrospray ionization (DESI), an ambient technique, has been explored as a tool for the development of a fast screening approach for supramolecular complexes capitalizing on the specificity of mass spectrometric detection. A library of twelve potential guests for inclusion by a β‐cyclodextrin host was initially screened via DESI using a spray solution incorporating the host directed toward an array of deposited guests. The steroid nortestosterone was used to verify the applicability of reactive DESI for complexation experiments with β‐cyclodextrin. Results from the DESI experiment and results from an analogous electrospray ionization (ESI) mass spectral screen were compared with solution‐phase data obtained by nuclear magnetic resonance (NMR) spectroscopy. The complexes detected using DESI were identical to those determined using NMR, validating the applicability of the technique to supramolecular applications, but the ESI data exhibited significant disparities, predominantly due to the interference of nonspecific artifacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The direct analysis of pharmaceutical formulations and active ingredients from non‐bonded reversed‐phase thin layer chromatography (RP‐TLC) plates by desorption electrospray ionisation (DESI) combined with ion mobility mass spectrometry (IM‐MS) is reported. The analysis of formulations containing analgesic (paracetamol), decongestant (ephedrine), opiate (codeine) and stimulant (caffeine) active pharmaceutical ingredients is described, with and without chromatographic development to separate the active ingredients from the excipient formulation. Selectivity was enhanced by combining ion mobility and mass spectrometry to characterise the desorbed gas‐phase analyte ions on the basis of mass‐to‐charge ratio (m/z) and gas‐phase ion mobility (drift time). The solvent composition of the DESI spray using a step gradient was varied to optimise the desorption of active pharmaceutical ingredients from the RP‐TLC plates. The combined RP‐TLC/DESI‐IM‐MS approach has potential as a rapid and selective technique for pharmaceutical analysis by orthogonal gas‐phase electrophoretic and mass‐to‐charge separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The bacteria of the genus Curtobacterium are usually seen as plant pathogen, but some species have been identified as endophytes of different crops and could as such present a potential for disease control and plant growth promotion. We have therefore applied the desorption electrospray ionization mass spectrometry imaging (DESI‐MSI) in the direct analysis of living Curtobacterium sp. strain ER1/6 colonies to map the surface metabolites, and electrospray ionization tandem mass spectrometry (ESI‐MS/MS) for characterization of these compounds. Several colony‐associated metabolites were detected. The ESI‐MS/MS showed characteristic fragmentations for phospholipids including the classes of glycerophosphocholine, glycerophosphoglycerol, and glycerophosphoinositol as well as several fatty acids. Although a secure identification was not obtained, many other metabolites were also detected for this bacteria species. Principal component analysis showed that fatty acids were discriminatory for Curtobacterium sp. ER1/6 during inoculation on periwinkle wilt (PW) medium, whereas phospholipids characterize the bacterium when grown on the tryptic soy agar (TSA) medium.  相似文献   

10.
Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the direct analysis of liquid samples. Several interesting results were found. First, in contrast to the previous DESI analysis of dried solid samples that was limited to proteins with MW ≤25 kDa (Anal. Chem. 2007, 79, 3514), bovine serum albumin (BSA, 66 kDa) was successfully ionized from solutions by DESI with observation of corresponding multiply charged ions. Second, direct DESI analysis of protein tryptic digest solutions without chromatographic separation, sample clean-up, and the sample drying step was demonstrated, providing reasonably good sequence coverage of 52% to 97%. Third, direct analysis of biofluids such as an undiluted urine sample without sample pretreatment is possible, emphasizing the high tolerance of DESI with salt. These results suggest that a charged droplet pick-up mechanism is responsible for desorption and ionization of liquid samples by DESI. Also, unlike in electrospray ionization (ESI), inhibition of electrochemical reduction in the negative ion mode was observed for liquid sample DESI. In addition, reactive DESI can be performed with ion/ion reactions of Zn(II) complexes for the selective binding of phosphoserine in the presence of serine. DESI experiment can also be carried out directly to liquid samples flowing out of a pumped syringe needle tip, allowing rapid analysis. Furthermore, on-line coupling of electrochemical cell with DESI-MS was demonstrated, in which perylene radical cations generated in the cell were successfully transferred to the gas-phase for MS detection by DESI. This study extended the scope of DESI-MS applications, which could have potentials in bioanalytical and forensic analysis.  相似文献   

11.
The use of mass spectrometry (MS) to acquire molecular images of biological tissues and other substrates has developed into an indispensable analytical tool over the past 25 years. Imaging mass spectrometry technologies are widely used today to study the in situ spatial distributions for a variety of analytes. Early MS images were acquired using secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. Researchers have also designed and developed other ionization techniques in recent years to probe surfaces and generate MS images, including desorption electrospray ionization (DESI), nanoDESI, laser ablation electrospray ionization, and infrared matrix-assisted laser desorption electrospray ionization. Investigators now have a plethora of ionization techniques to select from when performing imaging mass spectrometry experiments. This brief perspective will highlight the utility and relative figures of merit of these techniques within the context of their use in imaging mass spectrometry.  相似文献   

12.
A single gas‐assisted electrospray ion source developed for ambient mass spectrometry is introduced in this paper. Simultaneous self‐aspiration and electrospray could be achieved by using a constant sheath gas flow supplied from a mini air pump. A gas dynamic study of the spray module is carried out for structural optimization. The entire device exhibits a simplified design and has been systematically characterized through both simulated and experimental investigations. According to the results, the ion source exhibited satisfactory stability and the ability for quantitative operation in routine electrospray ionization mass spectrometry. Furthermore, the ion source can be operated as a desorption electrospray ionization source to perform direct desorption/ionization of the solid samples. The versatile source described here appears to provide a practical approach to perform ambient mass spectrometry analysis with unrestricted sampling operation, and the extensive gas dynamic studies together with the experimental characterization are believed to be helpful in building self‐aspirating spray devices. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Mass spectrometry (MS) applications for intact protein complexes typically require electrospray (ES) ionization and have not been achieved via direct desorption from surfaces. Desorption ES ionization (DESI) MS has however transformed the study of tissue surfaces through release and characterisation of small molecules. Motivated by the desire to screen for ligand binding to intact protein complexes we report the development of a native DESI platform. By establishing conditions that preserve non‐covalent interactions we exploit the surface to capture a rapid turnover enzyme–substrate complex and to optimise detergents for membrane protein study. We demonstrate binding of lipids and drugs to membrane proteins deposited on surfaces and selectivity from a mix of related agonists for specific binding to a GPCR. Overall therefore we introduce this native DESI platform with the potential for high‐throughput ligand screening of some of the most challenging drug targets including GPCRs.  相似文献   

14.
Sulfated oligosaccharides derived from glycosaminoglycans (GAGs) are fragile compounds, highly polar and anionic. We report here on the rare but successful application of desorption electrospray ionization (DESI) — LTQ‐Orbitrap mass spectrometry (MS) to the high‐resolution analysis of anionic and sulfated oligosaccharides derived from the GAGs hyaluronic acid and heparin. For that purpose, key parameters affecting DESI performance, comprising the geometric parameters of the DESI source, the probed surface and the spraying conditions, applied spray voltage, flow rates and solvent composition were investigated. Under suitable conditions, the DESI technique allows the preservation of the structural integrity of such fragile compounds. DESI enabled the sensitive detection of anionic hyaluronic acid and heparin oligosaccharides with a limit of detection (LOD) down to 5 fmol (≈10 pg) for the hyaluronic acid decasaccharide. Detection of hyaluronic acid oligosaccharides in urine sample was also successfully achieved with LOD values inferior to the ng range. Multistage tandem mass spectrometry (MSn) through the combination of the DESI source with a hybrid linear ion trap‐orbitrap mass spectrometer allowed the discrimination of isomeric sulfated oligosaccharides and the sequence determination of a hyaluronic acid decasaccharide. These results open promising ways in glycomic and glycobiology fields where structure–activity relationships of bioactive carbohydrates are currently questioned. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The detection and identification of proteins adsorbed onto biomaterial surfaces under ambient conditions has significant experimental advantages but has proven to be difficult to achieve with conventional measuring technologies. In this study, we present an adaptation of desorption electrospray ionization (DESI) and liquid extraction surface analysis (LESA) mass spectrometry (MS) coupled with in-situ surface tryptic digestion to identify protein species from a biomaterial surface. Cytochrome c, myoglobin, and BSA in a combination of single and mixture spots were printed in an array format onto Permanox slides, followed by in-situ surface digestion and detection via MS. Automated tandem MS performed on surface peptides was able to identify the proteins via MASCOT. Limits of detection were determined for DESI-MS and a comparison of DESI and LESA-MS peptide spectra characteristics and sensitivity was made. DESI-MS images of the arrays were produced and analyzed with imaging multivariate analysis to automatically separate peptide peaks for each of the proteins within a mixture into distinct components. This is the first time that DESI and LESA-MS have been used for the in-situ detection of surface digested proteins on biomaterial surfaces and presents a promising proof of concept for the use of ambient MS in the rapid and automated analysis of surface proteins.
Graphical abstract
?  相似文献   

16.
An on-probe pyrolyzer has been constructed and interfaced with desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid analysis of non-volatile pyrolysis products. The detection and analysis of non-volatile pyrolysis products of peptides, proteins and the synthetic polymer poly(ethylene glycol) were demonstrated with this instrument. The on-probe pyrolyzer can be operated off-line or on-line with the DESI source and was interfaced with a tandem MS (MS/MS) instrument, which allowed for structure characterization of the non-volatile pyrolytic products. Advantages of this system are its simplicity and speed of analysis since the pyrolysis is performed in situ on the DESI source probe and hence, it avoids extraction steps and/or the use of matrices (e.g., as in MALDI–MS analyses).  相似文献   

17.
An on-probe pyrolyzer has been constructed and interfaced with desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid analysis of non-volatile pyrolysis products. The detection and analysis of non-volatile pyrolysis products of peptides, proteins and the synthetic polymer poly(ethylene glycol) were demonstrated with this instrument. The on-probe pyrolyzer can be operated off-line or on-line with the DESI source and was interfaced with a tandem MS (MS/MS) instrument, which allowed for structure characterization of the non-volatile pyrolytic products. Advantages of this system are its simplicity and speed of analysis since the pyrolysis is performed in situ on the DESI source probe and hence, it avoids extraction steps and/or the use of matrices (e.g., as in MALDI–MS analyses).  相似文献   

18.
A liquid chromatography/mass spectrometry (LC/MS) method using desorption electrospray ionization (DESI) as a versatile interface has been established, which allows a wide range of elution flow rates, online derivatization via reactive DESI and further combination with electrochemistry.  相似文献   

19.
Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at controlling chemical contaminants in food. Data are given for analysis of pesticides, natural toxins, veterinary drugs, food additives, adulteration, packaging migrants, and for applications of food forensics.We discuss practical aspects of DESI, including its strengths and weaknesses, highlighting specific features of performing chemical reactions during the desorption/ionization process in order to enhance sensitivity and selectivity.Finally, we discuss the position of DESI with respect to current food-analysis regulation and legislation. We envisage that DESI can be a rapid, qualitative or semi-quantitative, screening tool, ultimately being applied on site prior to sampling and transport of samples to food-control laboratories.  相似文献   

20.
Desorption electrospray ionization (DESI) mass spectrometry is used for rapid, specific and sensitive detection of trace amounts of the notorious explosive TATP present on ambient surfaces by alkali metal complexation in a simple spray technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号