首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the global existence of weak solutions for a two‐component μ‐Camassa–Holm system in the periodic setting. Global existence for strong solutions to the system with smooth approximate initial value is derived. Then, we show that the limit of approximate solutions is a global‐in‐time weak solution of the two‐component μ‐Camassa–Holm system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Among numerous iterative methods for solving the minimal nonnegative solution of an M‐matrix algebraic Riccati equation, the structure‐preserving doubling algorithm (SDA) stands out owing to its overall efficiency as well as accuracy. SDA is globally convergent and its convergence is quadratic, except for the critical case for which it converges linearly with the linear rate 1/2. In this paper, we first undertake a delineatory convergence analysis that reveals that the approximations by SDA can be decomposed into two components: the stable component that converges quadratically and the rank‐one component that converges linearly with the linear rate 1/2. Our analysis also shows that as soon as the stable component is fully converged, the rank‐one component can be accurately recovered. We then propose an efficient hybrid method, called the two‐phase SDA, for which the SDA iteration is stopped as soon as it is determined that the stable component is fully converged. Therefore, this two‐phase SDA saves those SDA iterative steps that previously have to have for the rank‐one component to be computed accurately, and thus essentially, it can be regarded as a quadratically convergent method. Numerical results confirm our analysis and demonstrate the efficiency of the new two‐phase SDA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We characterize the values of the parameters for which a zero‐Hopf equilibrium point takes place at the singular points, namely, O (the origin), P+, and P? in the FitzHugh–Nagumo system. We find two two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at the origin is a zero‐Hopf equilibrium. For these two families, we prove the existence of a periodic orbit bifurcating from the zero‐Hopf equilibrium point O. We prove that there exist three two‐parameter families of the FitzHugh–Nagumo system for which the equilibrium point at P+ and at P? is a zero‐Hopf equilibrium point. For one of these families, we prove the existence of one, two, or three periodic orbits starting at P+ and P?. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Considered herein is a generalized two‐component Camassa–Holm system in spatially periodic setting. We first prove two conservation laws; then under proper assumptions on the initial data, we show the precise blow‐up scenarios and sufficient conditions guaranteeing the formation of singularities to the solutions of the generalized Camassa–Holm system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Considered herein is a two‐component Novikov equations (called Geng‐Xue system for short) with cubic nonlinearities. The persistence properties and some unique continuation properties of the solutions to the system in weighted Lp spaces are established. Moreover, a wave‐breaking criterion for strong solutions is determined in the lowest Sobolev space by using the localization analysis in the transport equation theory, and we also give a lower bound for the maximal existence time.  相似文献   

6.
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015  相似文献   

7.
In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})$ and some a priori estimates on the first‐order derivatives of approximation solutions.  相似文献   

8.
We study the large‐time behavior of (weak) solutions to a two‐scale reaction–diffusion system coupled with a nonlinear ordinary differential equations modeling the partly dissipative corrosion of concrete (or cement)‐based materials with sulfates. We prove that as t → ∞ , the solution to the original two‐scale system converges to the corresponding two‐scale stationary system. To obtain the main result, we make use essentially of the theory of evolution equations governed by subdifferential operators of time‐dependent convex functions developed combined with a series of two‐scale energy‐like time‐independent estimates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

10.
In this paper a definition of n‐valued system in the context of the algebraizable logics is proposed. We define and study the variety V3, showing that it is definitionally equivalent to the equivalent quasivariety semantics for the “Three‐valued BCK‐logic”. As a consequence we find an axiomatic definition of the above system.  相似文献   

11.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

13.
In this article, we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two‐dimensional heat equation. We employ, respectively, second‐order and fourth‐order schemes for the spatial derivatives, and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is nonsingular. Numerical experiments carried out on serial computers show the unconditional stability of the proposed method and the high accuracy achieved by the fourth‐order scheme. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 54–63, 2001  相似文献   

14.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A method for solving the time dependent Navier‐Stokes equations, aiming at higher Reynolds' number, is presented. The direct numerical simulation of flows with high Reynolds' number is computationally expensive. The method presented is unconditionally stable, computationally cheap, and gives an accurate approximation to the quantities sought. In the defect step, the artificial viscosity parameter is added to the inverse Reynolds number as a stability factor, and the system is antidiffused in the correction step. Stability of the method is proven, and the error estimations for velocity and pressure are derived for the one‐ and two‐step defect‐correction methods. The spacial error is O(h) for the one‐step defect‐correction method, and O(h2) for the two‐step method, where h is the diameter of the mesh. The method is compared to an alternative approach, and both methods are applied to a singularly perturbed convection–diffusion problem. The numerical results are given, which demonstrate the advantage (stability, no oscillations) of the method presented. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

16.
This paper is concerned with a periodic two‐component μ‐Hunter–Saxton system. We prove that the solution map of the Cauchy problem of the μ‐Hunter–Saxton system is not uniformly continuous in , s > 5/2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
We consider the Navier–Stokes system with variable density and variable viscosity coupled to a transport equation for an order‐parameter c. Moreover, an extra stress depending on c and ?c, which describes surface tension like effects, is included in the Navier–Stokes system. Such a system arises, e.g. for certain models of granular flows and as a diffuse interface model for a two‐phase flow of viscous incompressible fluids. The so‐called density‐dependent Navier–Stokes system is also a special case of our system. We prove short‐time existence of strong solution in Lq‐Sobolev spaces with q>d. We consider the case of a bounded domain and an asymptotically flat layer with a combination of a Dirichlet boundary condition and a free surface boundary condition. The result is based on a maximal regularity result for the linearized system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

19.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

20.
The μ‐Camassa‐Holm equation with linear dispersion is a completely integrable model. In this paper, it is shown that this equation has quadratic pseudo‐potentials that allow us to construct pseudo‐potential–type nonlocal symmetries. As an application, we obtain its recursion operator by using this kind of nonlocal symmetry, and we construct a Darboux transformation for the μ‐Camassa‐Holm equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号