首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro‐column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro‐column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro‐column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro‐column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50–50 μg/L with the correlation coefficient (r2) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively.  相似文献   

2.
An IPC‐imprinted (IPC is isoprocarb) poly(methacrylic acid)/SiO2 hybrid monolithic column was prepared and applied for the recognition of the template. The hybrid monolithic column was synthesized in a micropipette tip using methyltrimethoxysilane as the inorganic precursor, 3‐(methacryloxy)propyltrimethoxysilane as the coupling agent, and ethylene glycol dimethacrylate as the cross‐linker. The synthesis conditions, including the porogenic solvent, coupling agent, volume ratio of the inorganic alcoholysate and organic part, were optimized. The prepared monolithic column was characterized by SEM and FTIR spectroscopy. A simple, rapid, and sensitive method for the determination of IPC in rice using the imprinted monolithic column microextraction combined with HPLC was developed. Several parameters affecting the sample pretreatment were investigated, including the eluent, washing solution, and loading sample volume. The linearity of the calibration curve was observed in the range of 9.0–1000 μg/kg for IPC in rice with the correlation coefficient (r2) of 0.9983. The LOD was 3.0 μg/kg (S/N = 3). The assay gave recovery values ranging from 91 to 107%. The proposed method has been successfully applied for the selective extraction and sensitive determination of IPC in rice and a satisfactory result was obtained.  相似文献   

3.
A vanillin imprinted capillary monolithic column was synthesized by in situ polymerization reaction using ethylene-glycol dimethacrylate as cross-linking monomer and methacrylic acid as functional monomer. Under the optimum conditions of capillary electrochromatography, this molecularly imprinted polymer (MIP)-based column showed high selectivity and could recognize not only template molecule vanillin but also positional isomer o-vanillin from their structural analogues.  相似文献   

4.
Melamine (MAM) was employed as a pseudo template to prepare a molecularly imprinted polymer monolithic column which presents the ability of selective recognition to Triamterene (TAT), whose structure was similar to that of MAM. Methacrylic acid and ethylene glycol dimethacrylate were applied as functional monomer and cross‐linker, respectively, during the in situ polymerization process. Chromatographic behaviors were evaluated, the results indicated that the molecularly imprinted polymer monolithic column possessed excellent affinity and selectivity for TAT, and the imprinting factor was high up to 3.99 when 7:3 of ACN/water v/v was used as mobile phase. In addition, the dissociation constant and the binding sites were also determined by frontal chromatography as 134.31 μmol/L and 132.28 μmol/g, respectively, which demonstrated that the obtained molecularly imprinted polymer monolith had a high binding capacity and strong affinity ability to TAT. Furthermore, biological samples could be directly injected into the column and TAT was enriched with the optimized mobile phase. These assays gave recovery values higher than 91.60% with RSD values that were always less than 3.5%. The molecularly imprinted monolithic column greatly simplified experiment procedure and can be applied to preconcentration, purification, and analysis of TAT in biological samples.  相似文献   

5.
A polymethacrylate‐based molecularly imprinted monolithic column bearing mixed functional monomers, using non‐covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2‐hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)‐ornidazole ((S)‐ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure‐assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non‐imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)‐ONZ‐imprinted monolithic column.  相似文献   

6.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

7.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

8.
本文采用原位聚合法制备了以四肽YPLG为模板的毛细管分子印迹整体柱,在毛细管电色谱模式下以模板分子和它的结构类似物YPGL为样品,对分子印迹聚合物的识别机理进行了研究。这两种四肽由于化学结构相似且等电点非常相近,普通的电色谱和毛细管电泳方法分离非常困难。但我们的实验表明,印迹整体柱对模板分子具有特异性识别能力,因此YPLG与YPGL之间的分离因子为1.73,分离度达3.72。实验中系统地研究了流动相中有机溶剂的含量、缓冲溶液的pH值、缓冲溶液的盐浓度以及柱温对四肽识别的影响。实验中我们观察到模板在印迹柱上具有非线性的Van’t Hoff行为,揭示可能存在多重保留机理。本研究结果表明,在毛细管电色谱模式下,分子印迹整体柱的分子识别主要决定于样品与印迹聚合物之间的氢键作用以及印迹孔穴的三维结构。  相似文献   

9.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

10.
4-氨基吡啶印迹聚合物毛细管整体柱的电色谱识别机理   总被引:4,自引:0,他引:4  
在石英毛细管中原位聚合制备了4-氨基吡啶印迹聚合物毛细管整体柱,通过考察流动相中乙腈比例对4-氨基吡啶、2-氨基吡啶和硫脲在分子印迹聚合物毛细管整体柱、空白聚合物毛细管整体柱和硅烷化衍生的开管柱上迁移时间和分离情况的影响,研究了4-氨基吡啶分子印迹聚合物毛细管整体柱的CEC识别机理。发现有机添加剂的含量对印迹聚合物的印迹识别能力影响很大,甚至能改变混合物的流出顺序。根据随乙腈含量改变混合物迁移时间和流出顺序的变化规律,可以推测:随着乙腈含量的提高,色谱保留对迁移的影响越来越大;随着乙腈含量的降低,电泳对迁移的影响越来越大。  相似文献   

11.
A hyper‐cross‐linked polymer monolithic column, poly(methacrylatoethyl trimethyl ammonium‐co‐vinylbenzene chloride‐co‐divinylbenzene) (MATE‐co‐VBC‐co‐DVB) with phenyl and quaternary ammonium groups was successfully prepared in the current study. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The poly(MATE‐co‐VBC‐co‐DVB) monolithic column was demonstrated to have strong anion exchange/reversed‐phase (SAX/RP) mixed‐mode retention for analytes on capillary liquid chromatography (cLC). By using this monolithic column, we developed a rapid and sensitive method for the detection of DNA methylation. Our results showed that six nucleobases (adenine, guanine, cytosine, thymine, uracil, and 5‐methylcytosine (5‐mC)) can be baseline separated within 15 min by electrostatic repulsion and hydrophobic interactions between nucleobases and the monolithic stationary phase. The limit of detection (LOD, signal/noise=3) of 5‐mC is 0.014 pmol and endogenous 5‐mC can be distinctly detected by using only 10 ng genomic DNA, which is comparable to that obtained by mass spectrometry analysis. Furthermore, by using the method developed here, we found that DNA methylation inhibitor 5‐azacytidine (5‐aza‐C) and 5‐aza‐2′‐deoxycytidine (5‐aza‐CdR) could induce a significant decrease of genome‐wide DNA methylation in human lung carcinoma cells (A549) and cervical carcinoma cells (HeLa).  相似文献   

12.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

13.
A surface carbamazepine‐imprinted polymer was grafted and synthesized on the SiO2/graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using the sol–gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2/graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross‐linker and porogen, respectively. Nonimprinted polymer was also prepared for comparison. The properties of the molecularly imprinted polymer were characterized using field‐emission scanning electron microscopy and Fourier‐transform infrared spectroscopy. The surface molecularly imprinted polymer was utilized as an adsorbent of dispersive solid‐phase extraction for separation and preconcentration of carbamazepine. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the nonimprinted polymer was examined in absence and presence of competitive drugs. The carbamazepine calibration curve showed linearity in the ranges 0.5–500 μg/L. The limits of detection and quantification under the optimized conditions were 0.1 and 0.3 μg/L, respectively. The within‐day and between‐day relative standard deviations (n = 3) were 3.6 and 4.3%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 85%.  相似文献   

14.
In this work, we developed a novel molecularly imprinted solid‐phase microextraction with capillary electrophoresis method for the selective extraction and determination of protoberberines in complicated samples. The imprinted monolith was prepared in a micropipette tip‐based device by using acrylamide as the functional monomer, ethyleneglyoldimethacrylate as the cross‐linker and dimethylsulfoxide as the porogen, and exhibited an imprinting factor of 2.41 to berberine, 2.36 to palmatine and 2.38 to jatrorrhizine. Good capillary electrophoresis separation was achieved by using 20 mM phosphate buffer at pH 7 as running buffer with the addition of organic modifier of 10% methanol. Parameters such as sample pH value, sample flow rate and sample volume were investigated for imprinted monolith‐based solid‐phase microextraction. An imprinted solid‐phase microextraction with capillary electrophoresis method was developed, the method showed a wide linear range (0.3–50 μg/mL), good linearity (R2 ≥ 0.9947) and good reproducibility (relative standard deviations ≤ 0.73%), the limit of detection was as low as 0.1 μg/mL, which was lower than some reported methods based on capillary electrophoresis for protoberberines. The method has been applied for determination of three common protoberberines in Cortex Phellodendri Chinensis, by using a molecularly imprinted monolith as the selective sorbent, most of the matrices in the Cortex Phellodendri Chinensis sample were removed and three protoberberines were selectively enriched and well determined.  相似文献   

15.
A novel prepared method of molecularly imprinted monolithic polymers (MIPs) using 4-hydroxybenzoic acid (4-HBA) as templates for capillary electrochromatography (CEC) was developed. A strategy of high concentration of monomers in the pre-polymerization mixture was used to fulfil the solubility of polar imprinted molecule and reduction of the interference during complex formation. The imprinted polymer capillary monolithic column was synthesized by an in situ therm-initiated copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate with a mixture of toluene-isooctane as a porogenic solvent in the presence of a polar model imprinting molecule, 4-HBA. On the resultant MIP monolithic column, the effect of parameter of CEC on electroosmotic flow (EOF) and the retention of 4-HBA was investigated. The column efficiency of the imprinted molecule, 4-HBA, was 13,000 plates/m. The resolution of isomers of HBA was 5.0 and good molecular recognition was achieved for 4-HBA.  相似文献   

16.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

17.
A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The crystal violet‐imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off‐line molecularly imprinted SPE method followed by HPLC with diode‐array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R2 > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.  相似文献   

18.
The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.  相似文献   

19.
In this work, a novel molecularly imprinted polymer (MIP) monolithic column with integrated in‐column electroosmotic pump (EOP) was designed and successfully prepared to facilitate the capillary chromatography with MIP column. A silica‐based EOP was synthesized at the detection end of the MIP monolithic capillary column by so‐gel to provide the hydrodynamic driven force for the capillary chromatography. Because of large surface area and low fluidic resistance of the silica monolith,a strong and steady EOF was generated by silica‐based EOP, indicating that the EOP was quite compatible with MIP capillary column. With the sufficient EOF provided by EOP, the electro‐driven based capillary chromatographic separation of nitrophenol isomers was achieved in 4‐vinylpyridine‐based MIP monolithic capillary, which was originally proved infeasible because of the EOF shortage. No significant influence upon the specific recognition of the MIP was found due to the setting of EOP after the detection window of the column. The influence of experimental parameters on the EOF such as voltage and pH value of running buffer was investigated. The column was also evaluated by capillary liquid chromatographic mode to compare with EOP‐driven capillary chromatography. Higher column efficiency was obtained by EOP‐driven separation with improved peak shape. The results suggested that EOP‐supported technique would be a good way to solve the problem of weak EOF generation in electro‐driven capillary chromatography.  相似文献   

20.
Rapid and efficient enantioseparation of halogen aryl alcohols and β‐blockers propranolol and pindolol in packed bed CEC (p‐CEC) using as‐prepared submicron porous silica chiral stationary phases (CSPs) has been achieved. Monodispersed 0.66 and 0.81 μm chiral submicron porous silica spheres were prepared using tetramethoxysilane and hexadecyltrimethylammonium bromide, followed by a hydrothermal treatment method with ammonia–ethanol to expand the pore of silica spheres without changing their spherical morphology. A proper specific surface of ca. 230 m2/g and pore sizes average of 6–8 nm were obtained by this method. The submicron porous silica spheres were modified with mono‐6‐phenylcarbamoylated β‐CD via thiol‐en radical addition. They were packed into 9 cm 50 μm id capillary columns with photopolymerized monolithic frits. These submicron CSPs showed greater column efficiency (about 476 000 plates/m for 4‐iodophenyl‐1‐ethanol) and higher resolution than the corresponding 3 μm CSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号