首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The specific interactions between lectins and chitosan–sugar hybrids, the synthesized chitosan derivatives linking carbohydrate residue to the amino group of chitosan, were investigated. The specific bindings of chitosan‐L ‐fucose (Fuc) hybrid with Ulex europaeus agglutinin I (UEA I, a lectin specific to L ‐Fuc), and chitosan‐N‐acetyl‐D ‐glucosamine (D ‐GlcNAc) hybrid with Concanavalin A (Con A, a lectin specific to D ‐glucose, D ‐mannose and D ‐GlcNAc), were confirmed by a surface plasmon resonance technique. The microscopic observation of Pseudomonas aeruginosa, which was preincubated with the fluorescein isothiocyanate‐labeled chitosan‐L ‐Fuc hybrid, showed bacteria aggregation. The aggregation was thought to be resulted from the specific interaction of the L ‐Fuc residue of the hybrid with PA‐II lectin on the surface of P. aeruginosa. The chitosan‐L ‐Fuc hybrid inhibited P. aeruginosa growth more effectively in comparison with the other hybrids or unmodified chitosan. The enhancement of antimicrobial activity of chitosan‐L ‐Fuc hybrid could be attributed to the specific binding between PA‐II lectin of P. aeruginosa and L ‐Fuc residue of the L ‐Fuc hybrid. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
D ‐Desosamine is synthesized in 4 steps from methyl vinyl ketone and sodium nitrite. The key step in this chromatography‐free synthesis is the coupling of (R)‐4‐nitro‐2‐butanol and glyoxal (trimeric form) mediated by cesium carbonate, which affords in crystalline form 3‐nitro‐3,4,6‐trideoxy‐α‐D ‐glucose, a nitro sugar stereochemically homologous to D ‐desosamine. This strategy has enabled the syntheses of an array of analogous 3‐nitro sugars. In each case the 3‐nitro sugars are obtained in pure form by crystallization.  相似文献   

4.
A new anhydro disaccharide monomer, 1,6‐anhydro‐2,3‐di‐o‐benzyl‐4‐o‐(2′,3′,4′,6′‐tetra‐o‐benzyl‐β‐D ‐galactopyranosyl)‐β‐D ‐glucopyranose (benzylated 1,6‐anhydro lactose (LSHBE)), was synthesized from D ‐lactose to investigate the polymerizability and biological activities of the resulting branched polysaccharides. The ring‐opening polymerization of LSHBE was carried out with phosphorus pentafluoride as a catalyst under high vacuum to give a stereoregular benzylated (1 → 6)‐α‐D ‐lactopyranan. The molecular weights of poly(LSHBE)s increased with an increase in the amount of CH2Cl2 solvent, and polymerization temperatures were affected in both molecular weights and yields of the polymers. The copolymerization of LSHBE with benzylated 1,6‐anhydro‐β‐D ‐glucopyranose (LGTBE) gave the corresponding copolysacchrides having different proportions of lactose and glucose units in good yields. After debenzylation to recover hydroxyl groups and then sulfation, sulfated homopoly(lactose)s and copoly(lactose and glucose)s were obtained. Sulfated homopoly(lactose)s had moderate anti‐HIV (EC50 = 5.9 and 1.3 μg/mL) and blood anticoagulant activities (AA = 18 and 13 unit/mg), respectively. Sulfated copoly(lactose and glucose) having 15 mol % lactose units gave high anti‐HIV and blood anticoagulant activities of 0.3 μg/mL and 54 unit/mg, respectively. These biological results suggest that the distance between branched units on the main chain plays an important role in the anti‐HIV and blood anticoagulant activities. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 913–924, 2009  相似文献   

5.
β‐D ‐GlcpA‐(1→2)‐[β‐D ‐Xylp‐(1→2)‐α‐D ‐Manp‐(1→3)]‐α‐D ‐Manp‐(1→3)‐α‐D ‐Manp, the repeating unit of the exopolysaccharide from Cryptococcus neoformans serotype D, was synthesized as its 4‐methoxyphenyl glycoside. The approach presented here also provides a route to the synthesis of more complex repeating units of glucuconoxylomannan (GXM) of C. neoformans serotypes A–C.  相似文献   

6.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A series of ortho‐(aminomethyl)phenylboronic acids was synthesized and their structures were determined by single‐crystal X‐ray diffraction. The structures are stabilized by the inter‐ and intramolecular hydrogen bonds. The sugar‐binding ability of these compounds was evaluated for D ‐glucose, D ‐fructose and D ‐galactose by the competition assay with Alizarin Red S (ARS). The results indicate that the sugar binding ability and selectivity towards sugars depend on the substituents in amino group. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Steryl glycosides produced by bacteria play important biological roles in the evasion and modulation of host immunity. Step‐economical syntheses of three cholesteryl‐6‐O‐phosphatidyl‐α‐D ‐glucopyranosides (αCPG) unique to Helicobacter pylori have been achieved. The approach relies upon regioselective deprotection of per‐O‐trimethylsilyl‐α‐D ‐cholesterylglucoside at C6 followed by phosphoramidite coupling. Global TMS ether deprotection in the presence of oxygen and subsequent deprotection of the cyano ethyl phosphoester afforded the target compounds in 16–21 % overall yield starting from D ‐glucose. The structures of these natural products were determined using a combination of 2D NMR methods and mass spectrometry. These robust synthesis and characterization protocols provide analogues to facilitate glycolipidomic profiling and biological studies.  相似文献   

9.
Oximes of glucose, xylose, lactose, fructose, and mannose have been prepared. Nitrosation of the oximes of glucose, xylose, and lactose with NaNO2/HCl afforded 2‐(β‐glycopyranosyl)‐1‐hydroxydiazene‐2‐oxides, which were isolated as salts 13 , 22 , and 28 . Nitrosation of fructose oxime 29 furnished fructose, whereas nitrosation of mannose oxime 30 with NaNO2/HCl afforded the 1‐hydroxy‐2‐(β‐d‐ mannopyranosyl)diazene‐2‐oxide 32 , from which the p‐anisidinium salt 31 and the sodium salt 33 were prepared. However, nitrosation of 30 with isopentyl nitrite in aqueous solutions of CsOH or KOH resulted in the formation of the 2‐(α‐D ‐mannofuranosyl)‐1‐hydroxydiazene‐2‐oxide salts 34 and 35 , respectively. Methylation of the ammonium 2‐(β‐D ‐glucopyranosyl)‐1‐hydroxydiazene‐2‐oxide 13 yielded the 1‐methoxy compound, which was benzoylated to afford the tetra‐O‐benzoate 14 a , the structure of which was confirmed by X‐ray diffraction analysis. From the glucose O‐methyloximes 15 and 16 the N‐methoxy‐N‐nitroso‐2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosylamine 18 was prepared. The structure of this compound was confirmed by X‐ray diffraction analysis. Treatment of acetobromoglucose with cupferron furnished the 1‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosyloxy)‐2‐phenyldiazene‐2‐oxide 20 .  相似文献   

10.
A reliable and high yielding synthetic pathway for the synthesis of the biologically highly important class of nucleoside diphosphate sugars (NDP‐sugars) was developed by using various cycloSal‐nucleotides 1 and 9 as active ester building blocks. The reaction with anomerically pure pyranosyl‐1‐phosphates 2 led to the target NDP‐sugars 20 – 45 in a nucleophilic displacement reaction, which cleaves the cycloSal moiety in anomerically pure forms. As nucleosides cytidine, uridine, thymidine, adenosine, 2′‐deoxy‐guanosine and 2′,3′‐dideoxy‐2′,3′‐didehydrothymidine were used while the phosphates of D ‐glucose, D ‐galactose, D ‐mannose, D ‐NAc‐glucosamine, D ‐NAc‐galactosamine, D ‐fucose, L ‐fucose as well as 6‐deoxy‐D ‐gulose were introduced.  相似文献   

11.
Acetyl and formyl group migration, mutarotation, and hydrolysis of mono‐O‐acylated glucose are studied by in situ 1D and 2D 1H NMR spectroscopy. α‐D ‐Glucosyl‐1‐acetate and α‐D ‐glucosyl‐1‐formate serve as sole starting materials. They are generated in situ by configuration retaining glucosyltransfer from α‐D ‐glucosyl‐1‐phosphate to formate and acetate, which is catalyzed by the Glu‐237 → Gln mutant of Leuconostoc mesenteroides sucrose phosphorylase. Temporary accumulated regio‐isomeric mono‐O‐acyl D ‐glucoses are identified, characterized, and quantified directly from the reaction mixture. Time courses of the transformations give insight into pH dependence of acyl group migration and mutarotation as well as into the stability of various regioisomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Chemical synthesis of a trisaccharide related to the cytotoxic triterpenoid saponins isolated from the bark of Albizia procera has been accomplished through a concise stepwise glycosylation strategy starting from commercially available D ‐xylose, 2‐acetamido‐2‐deoxy‐D ‐glucose and L ‐arabinose. The target trisaccharide was designed with a 4‐methoxyphenyl (MP) aglycone to extend the scope of conversion to suitable glycoconjugates via selective removal of 4‐methoxyphenyl (MP) group. An unexpected phenomenon, i.e., the arabinosyl residue assumed the 1C4 conformation instead of the typical 4C1 form, was observed. Deprotection could restore the normal conformation.  相似文献   

13.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

14.
Complex formation between N‐butylboronic acid and D ‐(+)‐glucose, D ‐(+)‐mannose, methyl‐α‐D ‐glucopyranoside, methyl‐β‐D ‐galactopyranoside and methyl α‐D ‐mannopyranoside under neutral conditions was investigated by 1H, 13C and 11B NMR spectroscopy and gas chromatography–mass spectrometry (GC–MS) D ‐(+)‐Glucose and D ‐(+)‐mannose formed complexes where the boronates are attached to the 1,2:4,6‐ and 2,3:5,6‐positions of the furanose forms, respectively. On the other hand, the boronic acid binds to the 4,6‐positions of the two methyl derivatives of glucose and galactose. Methyl α‐D ‐mannopyranoside binds two boronates at the 2,3:4,6‐positions. 11B NMR was used to show the ring size of the complexed sugars and the boronate. GC–MS confirmed the assignments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Four kinds of bio‐based polyurethanes bearing hydroxy groups in the pendants were synthesized by the polyaddition of D ‐mannitol‐ and D,L ‐erythritol‐derived diols (1,2:5,6‐di‐O‐isopropylidene‐D ‐mannitol and 1,2‐O‐isopropylidene‐D,L ‐erythritol) with hexamethylene diisocyanate and methyl (S)‐2,6‐diisocyanatohexanoate and the subsequent deprotection of the isopropylidene groups. They were hydrolyzed much more quickly than the corresponding protected polyurethanes at 50 °C and pH 7.0, although their hydrolytic degradation rate was lower than that of polyurethanes with saccharic and glucuronic lactone groups, which had been reported in our previous articles. The introduction of D ‐mannitol units to the polyether‐polyurethanes containing poly(oxytetramethylene) glycol units also enhanced their hydrolyzibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The bicyclic depsipeptide histone deacetylase (HDAC) inhibitors spiruchostatins A and B, 5′′‐epi‐spiruchostatin B and FK228 were efficiently synthesized in a convergent and unified manner. The synthetic method involved the following crucial steps: i) a Julia–Kocienski olefination of a 1,3‐propanediol‐derived sulfone and a L ‐ or D ‐malic acid‐derived aldehyde to access the most synthetically challenging unit, (3S or 3R,4E)‐3‐hydroxy‐7‐mercaptohept‐4‐enoic acid, present in a D ‐alanine‐ or D ‐valine‐containing segment; ii) a condensation of a D ‐valine‐D ‐cysteine‐ or D ‐allo‐isoleucine‐D ‐cysteine‐containing segment with a D ‐alanine‐ or D ‐valine‐containing segment to directly assemble the corresponding seco‐acids; and iii) a macrocyclization of a seco‐acid using the Shiina method or the Mitsunobu method to construct the requisite 15‐ or 16‐membered macrolactone. The present synthesis has established the C5′′ stereochemistry of spiruchostatin B. In addition, HDAC inhibitory assay and the cell‐growth inhibition analysis of the synthesized depsipeptides determined the order of their potency and revealed some novel aspects of structure–activity relationships. It was also found that unnatural 5′′‐epi‐spiruchostatin B shows extremely high selectivity (ca. 1600‐fold) for class I HDAC1 (IC50=2.4 nM ) over class II HDAC6 (IC50=3900 nM ) with potent cell‐growth‐inhibitory activity at nanomolar levels of IC50 values.  相似文献   

17.
A New Access to 2′‐ O ‐(2‐Methoxyethyl)ribonucleosides Starting from D ‐Glucose A new synthesis of 2′‐O‐(2‐methoxyethyl)ribonucleosides, building blocks for second‐generation antisense oligonucleotides, starting from D ‐glucose is presented. The key‐step is the transformation of 3‐O‐methoxyethylallofuranose to 2‐O‐(2‐methoxyethyl)ribose by NaIO4 oxidation. Together with the 4′‐phenylbenzoyl protecting group, which results in crystalline intermediates, this synthesis provides an easy and cheap access to 2′‐O‐(2‐methoxyethyl)‐substituted ribonucleosides.  相似文献   

18.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

19.
To develop the new‐type poly(L ‐lactide)‐based biomedical material having a wettable surface, the synthesis of poly(L ‐lactide) with one terminal D ‐glucose residue was investigated. After the hydroxyl group at 1‐C of α‐tetrabenzyl glucose, α‐Glc(Bzl)4, was converted to the corresponding potassium alkoxide by using potassium tert‐butoxide, L ‐lactide (L ‐LA) was polymerized in the presence of α‐Glc(Bzl)4‐OK as an initiator in tetrahydrofuran at room temperature to prepare α‐Glc(Bzl)4‐polyLA. Subsequently, the removal of O‐protecting benzyl groups in the terminal α‐Glc(Bzl)4 residue was carried out by hydrogenolysis with Pd/C to obtain the objective D ‐glucose‐end‐capped polyLA, α‐Glc‐polyLA. The wettability of surface of the α‐Glc‐polyLA material is discussed using the difference of the dynamic contact angle between a α‐Glc‐polyLA/homopolyLA blend film and a film of the polyLA homopolymer.  相似文献   

20.
The Advanced Glycation End Products (AGEs) are the causative substances of lifestyle‐habit illness. To elucidate the glycation mechanism of the protein, the reaction of lysozyme with D ‐glucose was analyzed by the fluorescence, TOF‐MS, and 13C‐NMR spectroscopy under the physiological condition. The fluorescence intensity of lysozyme in the glycation solution increased proportionally with a reaction time of ten weeks. The MALDI‐TOF‐MS spectra of the reaction solution after two weeks showed a peak at m/z 15066, which indicated the presence of a larger molecule than the native lysozyme (m/z 14331), and new peaks at m/z 30105 (dimer) and 45000 (trimer) were also observed. The spectral analysis supported the assumption of a continuous glycation reaction of D ‐glucose with lysozyme and a 30% transformation of lysozyme to the dimeric form during ten weeks. The 13C‐NMR spectra of lysozyme showed six [13C]‐labeled signals by the glycation reaction with [13C]‐glucose after two weeks of reaction. The combined analysis of TOF‐MS and 13C‐NMR spectra uncovered that first products of the glycation reaction of lysozyme with D ‐glucose can be observed already three hours after starting the reaction and that nine D ‐glucose units are attached during ten weeks at 37°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号