首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica‐C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o‐phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets.  相似文献   

2.
The amino alcohols in l‐ valinol were effectively separated and quantified using hydrophilic interaction chromatography with fluorescence detection. The influence of the mobile phase (salt type, buffer concentration, and pH) on retention was studied. A column TSKgel amide and mobile phase consisting of 10 mM acetate buffer pH 4.0 and acetonitrile (20:80, v/v) provided well‐ separated symmetric peaks of analytes. Fluorescence detection was performed using postcolumn derivatization with o‐phtaldialdehyde/2‐mercaptoethanol at an excitation and emission wavelength of 345 and 450 nm, respectively. Simple sample pretreatment and very high sensitivity represent the main advantages of the developed method. After validation, the method was successfully applied to the analysis of commercial samples of l‐ valinol.  相似文献   

3.
In this study the development, validation and application of a new chromatographic method for the determination of glutathione (GSH) in wine samples is presented. The separation of the GSH was carried out using a sulfobetaine-based hydrophilic interaction chromatography (HILIC) analytical column whereas its detection was carried out spectrofluorimetrically (λext/λem = 340/455 nm) after post-column derivatization with o-phthalaldehyde. GSH was separated efficiently from matrix endogenous compounds of wines by using a mobile phase of 15 mmol L−1 CH3COONH4 (pH = 2.5)/CH3CN, 35/65% (v/v). The parameters of the post-column reaction (pH, amount concentration of the reagent and buffer solution, flow rate, length of the reaction coil) were investigated. The linear determination range for GSH was 0.25–5.0 μmol L−1 and the LOD was 19 nmol L−1. No matrix effect was observed, while the accuracy was evaluated with recovery experiments and was ranged between 89% and 108%.  相似文献   

4.
In the present study, we propose the first HPLC method coupled to postcolumn derivatization for the determination of rimantadine in human urine samples. The analyte and amantadine (internal standard) were isocratically separated using an RP monolithic stationary phase (100 × 4.6 mm id) with a mobile phase consisting of CH3OH/phosphate buffer (25 mmol/L, pH 3.0) at a volume ratio of 50:50. Postcolumn derivatization involved on‐line reaction with o‐phthalaldehyde (20 mmol/L) and N‐acetyl‐cysteine (5 mmol/L) at alkaline medium (100 mmol/L borate pH 11.0). Spectrofluorimetric detection at λex/λem = 340/455 nm enabled the selective and sensitive determination of rimantadine in urine samples at a range of 50–500 ng/mL with an LOD of 5 ng/mL. Human urine samples were analyzed successfully after SPE using hydrophilic‐lipophilic balanced RP cartridges (30 mg/mL, Oasis HLB). Recoveries ranged between 89.7 and 102.7%.  相似文献   

5.
Hydrophilic interaction liquid chromatography (HILIC) can be performed on titania. To better understand the retention mechanisms on titania, a series of model carboxylates were used. Increasing acetonitrile above 60% dramatically increased the retention and efficiency for carboxylates. The effect of buffer type, buffer concentration, buffer pH and column temperature were also studied. Multiple retention mechanisms are operative on titania, and whether electrostatic repulsion, ligand exchange or HILIC dominates retention and separation depends on the eluent conditions. Guidelines for separations on titania are: (1) higher %ACN most improves retention and efficiency; (2) higher salt concentration increases retention; (3) elution strength is in the order acetate ? malate < methyl phosphonate ? phosphate; (4) electrostatic repulsion (ERLIC) is more operative at low %ACN than high %ACN. A bare titania column (150 mm × 4.6 mm I.D., 5 μm) was used for the separation of diphenylacetate, 4-nitrobenzoate, benzoate, 4-aminobenzoate, 4-hydroxybenzoate, phthalate, 3-aminophthalate, 1,3,5-benzenetricarboxylate, 1,2,4-benzenetricarboxylate, 1,2,4,5-benzenetetracarboxylate, benzenepentabenzoate and mellitate under HILIC conditions based on these guidelines, with efficiencies of 2800–55,000 plates/m.  相似文献   

6.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   

7.
Radix isatidis is a famous anti‐influenza virus herbal medicine traditionally taken as a water decoction. However, the chemical fingerprint analysis of Radix isatidis is dominantly based on RPLC, from which it is difficult to obtain fingerprint information of hydrophilic compounds. Here, we developed the separation of Radix isatidis by RPLC and hydrophilic interaction chromatography, comparing the traditional RPLC fingerprint with the hydrophilic interaction chromatography fingerprint. Besides, an anti‐viral assay of Radix isatidis was conducted to evaluate its efficacy. The fingerprint–efficacy relationships between the fingerprints and the anti‐viral activity were further investigated with principal component regression analysis. The results showed that the anti‐viral activity correlated better with the hydrophilic interaction chromatography fingerprint than with the RPLC fingerprint. This study indicates that hydrophilic interaction chromatography could not only be a complementary method to increase the fingerprint coverage of conventional RPLC fingerprint, but also can better represent the efficacy and quality of Radix isatidis.  相似文献   

8.
A challenge for capillary LC (cLC) is fraction collection and the manipulation of fractions from microscale columns. An emerging approach is the use of segmented flow or droplet technology to perform such tasks. In this work, a fraction collection and postcolumn reaction system based on segmented flow was developed for the gradient cLC of proteins. In the system, column effluent and immiscible oil are pumped into separate arms of a tee resulting in regular fractions of effluent segmented by oil. Fractions were generated at 1 Hz corresponding to 5 nL volumes. The fraction collection rate was high enough to generate over 30 fractions per peak and preserve chromatographic resolution achieved for a five‐protein test mixture. The resulting fractions could be stored and subsequently derivatized for fluorescence detection by pumping them into a second tee where naphthalene dicarboxyaldehyde, a fluorogenic reagent, was pumped into a second arm and added to each fraction. Proteins were derivatized within the droplets enabling postcolumn fluorescence detection of the proteins. The experiments demonstrate that fraction collection from cLC by segmented flow can be extended to proteins. Further, they illustrate a potential workflow for protein analysis based on postcolumn derivatization for fluorescence detection.  相似文献   

9.
A novel sulfoalkylbetaine‐based zwitterionic organic‐silica hybrid monolith was synthesized by using 3‐dimethyl‐(3‐(N‐methacrylamido) propyl) ammonium propane sulfonate (DMMPPS, neutral sulfoalkyl‐betaine monomer). The added amount of zwitterionic monomer was significantly increased when DMMPPS was used instead of the conventionally used acidic sulfoalkyl‐betaine monomer, that is, the N,N‐dimethyl‐N‐ methacryloxyethyl‐N‐(3‐sulfopropyl) ammonium betaine, and this led to a significantly improved hydrophilicity of the monolith. The DMMPPS‐based organic‐silica hybrid monolith exhibited good mechanical stability and excellent separation performance. About ~20 μm plate height (corresponding to column efficiency of ~50 000 plates/m) was obtained for nucleoside at the linear velocity of 1 mm/s. The proposed monolithic column was successfully applied to separate purines/pyrimidines, nucleotides, and tryptic digest of bovine hemoglobin in a nano‐HILIC mode, and the results demonstrated that such monolith has the potential for separation of a variety of hydrophilic substances.  相似文献   

10.
Pfeffer  M.  Walenciak-Reddel  E. 《Chromatographia》1994,38(7-8):479-484
Summary A high-performance liquid chromatographic method is discribed for the determination of 6-amino-2,2-dimethyl-1,3-dioxepan-5-ol using Spherisorb ODS II stationary phase and mobile phase 30:70 (v/v) methanol: aqueous 1-octane sulfonic acid. Detection was fluorimetric following postcolumn derivatization with o-phthaladehyde/2-mercaptoethanol. The procedure was applied to the analysis of aqueous solutions and microcrystalline suspensions in liquid paraffin, prepared for investigation of the toxicological profile. The method was validated for selectivity, linearity of detector response, repeatability, limit of detection and quantitation. The HPLC method was selective. The instrumental limit of detection was 0.5 ng per injection (0.05 g mL–1). The method detection limits were 0.5 g mL–1 aqueous solution and 5 g mL–1 liquid paraffin suspension, the quantitation limit 0.05 mg mL–1 aqueous solution and 1.0 mg mL–1 liquid paraffin. Linearity was within 0.94–47.1 g mL–1. Intra-assay accuracy accounted for 99–100% in the range 0.05–226 mg mL–1 aqueous solution, intra-assay precision for 2% (C.V.). For microcrystalline liquid paraffin suspensions with 1 and 250 mg mL–1 99 and 109% was found for intra-assay accuracy. Intra-assay precision was 5% (C.V.). Reliable results over a wide concentration range can be obtained. The procedure is considered valid for determination of the analyte in aqueous solution or microcrystalline paraffin oil suspensions.  相似文献   

11.
《Electrophoresis》2018,39(16):2144-2151
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide‐ and cyclofructan‐based stationary phases. The effects of buffer concentration, pH and acetonitrile‐to‐aqueous‐part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan‐based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan‐based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.  相似文献   

12.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

13.
A novel cationic hydrophilic interaction monolithic stationary phase based on the chemical modification of carboxymethyl chitosan (CMCH) to the monolithic silica skeleton using carbodiimide as an activation reagent was prepared for performing capillary liquid chromatography. The amino and hydroxy moieties of CMCH functioned as both the ion-exchange sites and polar providers. The performance of the column was studied by the separation of polar acidic compounds. The chitosan functionalized monolithic silica column showed good selectivity for nucleosides, nucleotides, aromatic acids and aliphatic acids. The mechanism for the separation of these compounds was also studied. The results showed that these compounds were separated primarily based on the hydrophilic interaction mechanism.  相似文献   

14.
A new hydrophilic interaction ultra‐performance LC method was established for the whole blood measurement of L‐ergothioneine. Chromatographic separation was achieved in a fairly short time, less than 4 min, on a 100 × 2.1 mm Acquity UPLC BEH HILIC 1.7 μm column with a mobile phase consisting of a mixture of 100 mmol/L ammonium acetate/ACN/water (5:85:10, v/v/v) that flowed isocratically at 0.250 mL/min. The LOD and the limit of quantification were 3.85 and 11.67 μmol/L, respectively. The method exhibited linearity in a concentration range of 15.63–1000 μmol/L (R2 > 0.999). Mean recovery was 96.34% whereas intraassay and interassay precision were 1.52 and 1.82% RSD, respectively. On the whole, the developed method is simple, fast, precise, accurate, and sensitive and may be useful for routine analyses.  相似文献   

15.
A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono‐hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R2 > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co‐existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.  相似文献   

16.
Zuo Y  Yang Y  Zhu Z  He W  Aydin Z 《Talanta》2011,83(5):53-1710
Uric acid is the end-product of purine metabolism and a major antioxidant in humans. The concentrations of uric acid in plasma and urine are associated with various diseases and routinely measured in clinical and biomedical laboratories using enzymatic conversion and colorimetric measurement. In this study a hydrophilic interaction chromatographic (HILIC) method was developed for simultaneous determination of uric acid and creatinine, a biomarker of urine dilution and renal function, in human urine. Urine samples were pretreated by dilution, protein precipitation, centrifugation and filtration. Uric acid and creatinine were separated from other components in urine samples and quantified using HILIC chromatography. A linear relationship between the ratio of the peak area of the standards to that of the internal standard and the concentration of the standards was obtained for both uric acid and creatinine with the square of correlation coefficients >0.999 for both analytes. The detection limits were 0.04 μg/mL for creatinine and 0.06 μg/mL for uric acid. The described HILIC method has proved to be simple, accurate, robust and reliable.  相似文献   

17.
Liquid chromatographic assays were developed using a mixed‐mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve‐mediated column switching and was based upon a single high‐performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion‐exchange, (ii) mixed‐mode interactions under an applied dual gradient (reversed‐phase/ion‐exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed‐mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well‐resolved unknown peaks.  相似文献   

18.
建立了亲水作用色谱-串联质谱同时测定液态奶中三聚氰酸和三聚氰胺的方法。液态奶样品经体积分数2.5%甲酸溶液提取、离心后乙腈稀释,亲水作用色谱柱分离,电喷雾串联四极杆质谱检测器检测,分别在负、正离子模式下测定三聚氰酸和三聚氰胺。三聚氰酸和三聚氰胺分别在0.5~100μg/L、0.1~50μg/L范围内线性关系良好。在0.25~15mg/kg、0.1~7.5mg/kg添加水平范围内,三聚氰酸平均回收率为84.5%~98.0%(RSD为2.1%~6.1%),三聚氰胺平均回收率为85.5%~88.9%(RSD为3.2~5.8%)。三聚氰酸、三聚氰胺定量限分别为0.25mg/kg、0.1mg/kg。  相似文献   

19.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

20.
The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono‐, di‐, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号