首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to determine optimally localized polynomials on the unit ball.  相似文献   

2.
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle.  相似文献   

3.
Given a probability measure μ on the unit circle T, we study para-orthogonal polynomials Bn(.,w) (with fixed w ∈ T) and their zeros which are known to lie on the unit circle. We focus on the properties of zeros akin to the well known properties of zeros of orthogonal polynomials on the real line, such as alternation, separation and asymptotic distribution. We also estimate the distance between the consecutive zeros and examine the property of the support of μ to attract zeros of para-orthogonal polynomials. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
We provide a representation in terms of certain canonical functions for a sequence of polynomials orthogonal with respect to a weight that is strictly positive and analytic on the unit circle. These formulas yield a complete asymptotic expansion for these polynomials, valid uniformly in the whole complex plane. As a consequence, we obtain some results about the distribution of zeros of these polynomials. The main technique is the steepest descent analysis of Deift and Zhou, based on the matrix Riemann-Hilbert characterization proposed by Fokas, Its, and Kitaev.  相似文献   

5.
Relation between two sequences of orthogonal polynomials, where the associated measures are related to each other by a first degree polynomial multiplication (or division), is well known. We use this relation to study the monotonicity properties of the zeros of generalized orthogonal polynomials. As examples, the Jacobi, Laguerre and Charlier polynomials are considered.  相似文献   

6.
Two sequences of polynomials are studied. One satisfies a three term recurrence relation for specific parameters and another a para-orthogonality property. Using the fact that these polynomials have their zeros lying on the unit circle and some other properties, we establish a criterion in order that the polynomials be univalent in the open unit disk.  相似文献   

7.
We study the interlacing properties of zeros of para–orthogonal polynomials associated with a nontrivial probability measure supported on the unit circle dµ and para–orthogonal polynomials associated with a modification of dµ by the addition of a pure mass point, also called Uvarov transformation. Moreover, as a direct consequence of our approach, we present some results related with the Christoffel transformation.  相似文献   

8.
In this paper we present some results concerning the zeros of sequences of polynomials orthogonal with respect to a quasi-definite inner product on the unit circle. We study zero general properties, the existence of sequences with prefixed zeros and some situations concerning the polynomials with multiple zeros.  相似文献   

9.
We show that certain sums of products of Hermite-Biehler entire functions have only real zeros, extending results of Cardon. As applications of this theorem, we construct sums of exponential functions having only real zeros, we construct polynomials having zeros only on the unit circle, and we obtain the three-term recurrence relation for an arbitrary family of real orthogonal polynomials. We discuss a similarity of this result with the Lee-Yang Circle Theorem from statistical mechanics. Also, we state several open problems.

  相似文献   


10.
There is a set of orthogonal polynomials {gn(x)} which plays a relevant role in the treatment of the case of anisotropic scattering in neutron-transport and radiative-transfer theories. They appear also in the spherical harmonics treatment of the isotropic scattering. These polynomials are orthogonal with respect to a weight function which is continuous in the interval [−1, + 1] and has a finite number of symmetric Dirac masses. Although some other structural properties of these polynomials (e.g., the three-term recurrence relation) as well as some properties of their zeros have been published, much more need to be known. In particular, neither the second-order differential equation nor the density of zeros (i.e., the number of zeros per unit of interval) of the polynomial gn(x) have been found. Here we obtain the second-order differential equation in the case that these polynomials are hypergeometric, so leaving open the general case. Furthermore, the exact expressions of the moments around the origin of the density of zeros of gn(x) are given in the general case. The asymptotic density of zeros is also pointed out. Finally, these polynomials are shown to belong to the Nevai's class.  相似文献   

11.
In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the zeros of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the zeros. This relation between the random block matrices and matrix orthogonal polynomials allows a derivation of the asymptotic spectral distribution of the matrices.  相似文献   

12.
We obtain the Laurent polynomial of Hermite interpolation on the unit circle for nodal systems more general than those formed by the n-roots of complex numbers with modulus one. Under suitable assumptions for the nodal system, that is, when it is constituted by the zeros of para-orthogonal polynomials with respect to appropriate measures or when it satisfies certain properties, we prove the convergence of the polynomial of Hermite-Fejér interpolation for continuous functions. Moreover, we also study the general Hermite interpolation problem on the unit circle and we obtain a sufficient condition on the interpolation conditions for the derivatives, in order to have uniform convergence for continuous functions.Finally, we obtain some improvements on the Hermite interpolation problems on the interval and for the Hermite trigonometric interpolation.  相似文献   

13.
We derive asymptotics for polynomials orthogonal over the complex unit disk with respect to a weight of the form 2|h(z)|, with h(z) a polynomial without zeros in |z|<1. The behavior of the polynomials is established at every point of the complex plane. The proofs are based on adapting to the unit disk a technique of J. Szabados for the asymptotic analysis of polynomials orthogonal over the unit circle with respect to the same type of weight.  相似文献   

14.
In this paper, the construction of orthogonal bases in the space of Laurent polynomials on the unit circle is considered. As an application, a connection with the so-called bi-orthogonal systems of trigonometric polynomials is established and quadrature formulas on the unit circle based on Laurent polynomials are studied.  相似文献   

15.
In this paper, we study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms have the same nth root behavior as the weighted norms for certain extremal polynomials. Our results include as special cases several of the previous results of Erd s, Freud, Jentzsch, Szeg and Blatt, Saff, and Simkani. Applications are given concerning the zeros of orthogonal polynomials over a smooth Jordan curve (in particular, on the unit circle) and the zeros of polynomials of best approximation on R to nonentire functions.  相似文献   

16.
We exploit difference equations to establish sharp inequalities on the extreme zeros of the classical discrete orthogonal polynomials, Charlier, Krawtchouk, Meixner and Hahn. We also provide lower bounds on the minimal distance between their consecutive zeros.  相似文献   

17.
Rakhmanov's theorem for orthogonal polynomials on the unit circle gives a sufficient condition on the orthogonality measure for orthogonal polynomials on the unit circle, in order that the reflection coefficients (the recurrence coefficients in the Szegő recurrence relation) converge to zero. In this paper we give the analog for orthogonal matrix polynomials on the unit circle.  相似文献   

18.
In 1975, Tom Koornwinder studied examples of two variable analogues of the Jacobi polynomials in two variables. Those orthogonal polynomials are eigenfunctions of two commuting and algebraically independent partial differential operators. Some of these examples are well known classical orthogonal polynomials in two variables, such as orthogonal polynomials on the unit ball, on the simplex or the tensor product of Jacobi polynomials in one variable, but the remaining cases are not considered classical by other authors. The definition of classical orthogonal polynomials considered in this work provides a different perspective on the subject. We analyze in detail Koornwinder polynomials and using the Koornwinder tools, new examples of orthogonal polynomials in two variables are given.  相似文献   

19.
We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independent solutions of these fourth-order difference equations, and show how the results obtained for modified classical discrete orthogonal polynomials can be extended to modified semi-classical discrete orthogonal polynomials. Finally, we extend the validity of the results obtained for the associated classical discrete orthogonal polynomials with integer order of association from integers to reals.  相似文献   

20.
Orthogonal polynomials satisfy a recurrence relation of order two defined by two sequences of coefficients. If we modify one of these recurrence coefficients at a certain order, we obtain the so-called perturbed orthogonal sequence. In this work, we analyse perturbed Chebyshev polynomials of second kind and we deal with the problem of finding the connection coefficients that allow us to write the perturbed sequence in terms of the original one and in terms of the canonical basis. From the connection coefficients obtained, we derive some results about zeros at the origin. The analysis is valid for arbitrary order of perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号