首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation of 2‐amino‐5‐phenyl‐5H‐thiazolo[4,3‐b] [1,3,4] thiadiazoles ( 1 ) with some carboxylic acid derivatives furnished corresponding compounds 2–4 , respectively. Alkylation of 1 with benzoylchloride and 4‐chlorobenzyl chloride afforded thiazolo[4,3‐b][1,3,4]thiadiazole derivatives 5 and 6 , respectively. Similarly, transformation of 1 with chloroacetyl chloride yielded chloroacetamide derivative 7 . The later compound was subjected to react with potassium thiocyanate or piperazine whereby, the binary thiazolidinone derivative 8 and N 1 ,N4‐disubstituted piperazine 9 were produced, respectively. Also, the reactivity of 1 toward various active methylene reagents was investigated. Accordingly, our attempts to synthesize the tricyclic heterocyclic system 10 , 11′ , 12 by reaction of 1 with chloroacetonitrile, 4‐oxo‐4‐phenylbutanoic acid and/or diethylmalonate in presence of acetyl chloride was furnished 10 , 11 , and 12 . The newly synthesized compounds were screened as antimicrobial agent.  相似文献   

2.
Different heterocyclic compounds were prepared starting from 2‐hydroxy benzohydrazide; for example, cyclization of hydrazide hydrazone 3 derived from 2‐hydroxybenzohydrazide 2 with acetic anhydride or concentrated sulfuric acid gave 1,3,4‐oxadiazole derivatives 4 – 5 . On the other hand, direct cyclization of 2‐hydroxy benzohydrazide 2 with one carbon cyclizing agent gave a new derivative of 1,3,4‐oxadiazole 7 , 8 , 9 , 10 , 11 . Heating of hydrazide hydrazone 3 with thioglycolic acid in pyridine gave thiazolidinone 12 . When 2‐hydroxy benzohydrazide 2 reacted with aliphatic carboxylic acids such as formic acid or acetic acid, it gave the corresponding N‐formyl or N‐acetyl derivatives 6 . Subsequent cyclization of 6 using phosphorous pentasulphide in pyridine gave 1,3,4‐thiadiazoles 13 . Cyclization of 2‐hydroxy benzohydrazide with ethyl acetoacetate gives pyrazolone derivative 14 . Finally, when an ethanolic solution of acid hydrazide 2 was treated with ammonium thiocyanate in 35% HCl, it gave the thiosemicarbazide 15 . Subsequent treatment of 15 with concentrated sulfuric acid or 10% sodium hydroxide gave 5‐amino‐1,3,4‐thiadiazole 16 and 1,2,4‐triazole 17 , respectively. The structures of all newly isolated compounds were confirmed using 1H NMR, IR spectra, and elemental analyses. The antimicrobial activities for all isolated compounds were examined against different microorganisms.  相似文献   

3.
Refluxing of 1,3‐oxazolone ( 1a ) with malononitrile in dry benzene and in the presence of ammonium acetate afforded imidazolone derivative ( 2 ). However, carrying out the same reaction in absolute ethanol and in the presence of piperidine as a base gave the benzamide derivative ( 4 ). Fusion of ( 1a ) with p‐anisidine gave the open adduct benzamide ( 6 ), which cyclized in acidic medium to give imidazolone derivative ( 7 ). Heating of imidazolone ( 7 ) with malononitrile above its melting point afforded 1,3‐diazepine derivative ( 8 ). Reaction of the carbohydrazide ( 9 ) with isatin in ethanol gives the corresponding Schiff base ( 11 ), which then reacted with acetyl acetone, ethyl acetoacetate, ethyl cyanoacetate, and malononitrile in n‐butanol and piperidine to afford benzamide derivative ( 13 , 14 , 15 ) and ( 16 ), respectively. The structures of the newly synthesized compounds were established on the basis of IR, 1H‐NMR, mass spectra, and elemental analyses.  相似文献   

4.
1,3,4‐Thiadiazole‐enaminone ( 6 ) was synthesized via reaction of the benzamide ( 5 ) with DMF‐DMA. The simple thiadiazole‐enaminone ( 6 ) was used as a synthetic precursor for the synthesis of a wide variety of new heterocyclic compounds, including the 5‐substituted‐1,3,4‐thiadiazole derivatives ( 7 ), ( 8 ), ( 16 ), ( 17 ) and ( 18 ), which were obtained via reactions of ( 6 ) with nitrogen nucleophiles. Also, reactions of enaminone ( 6 ) with carbon nucleophiles afforded the respective 1,3,4‐thiadiazoles ( 10a , 10b ). Diazotization of the benzamide ( 20 ) with the heteroaromatic amine salts gave the hydrazone derivatives ( 21 ) and ( 22 ). Cyclization of the latter hydrazones yielded the corresponding pyrazolotriazine and 1,2,4‐triazolotriazine derivatives ( 23 ) and ( 24 ), respectively. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis.  相似文献   

5.
The reaction of 3‐methylthiazolo[3,2‐a]benzimidazole‐2‐carboxylic acid ethyl ester (1) with hydrazine hydrate gives the hydrazide 2 which reacts with CS2/KOH to afford the potassium salt 3. Treatment of 3 with l‐aryl‐2‐bromoethanones 4a,b afforded the 1,3‐thiazoline derivatives 6a,b, respectively, while the reaction of 3 with hydrazine hydrate afforded 1,2,4‐triazole‐3‐thione derivative 9. The reaction of 9 with l‐aryl‐2‐bromoethanones 4a,b and with hydrazonyl chlorides 11a,b gave the 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazine derivatives 10a,b and 12a,b, respectively. Treatment of hydrazide 2 with phenyl isothiocyanate in refluxing benzene gave the thiosemicarbazide derivative 16. The latter reaction gave 1,3,4‐oxadiazole derivative 17 when benzene was replaced by DMF. Cyclization of the thiosemicarbazide derivative 16 with NaOH resulted in the formation of the 1,2,4‐triazole‐3‐thione derivative 18.  相似文献   

6.
Four imidazo[2,1‐b][1,3,4]thiadiazoles containing a simply‐substituted 6‐aryl group have been synthesized by reaction of 2‐amino‐1,3,4‐thiadiazoles with bromoacetylarenes using microwave irradiation and brief reaction times. 6‐(2‐Chlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H6ClN3S, (I), 6‐(2‐chlorophenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C11H8ClN3S, (II), 6‐(3,4‐dichlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H5Cl2N3S, (III), and 6‐(4‐fluoro‐3‐methoxyphenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C12H10FN3OS, (IV), crystallize with Z′ values of 2, 1, 1 and 2 respectively. The molecular skeletons are all nearly planar and the dihedral angles between the imidazole and aryl rings are 1.51 (8) and 7.28 (8)° in (I), 9.65 (7)° in (II), 10.44 (8)° in (III), and 1.05 (8) and 7.21 (8)° in (IV). The molecules in (I) are linked by three independent C—H...N hydrogen bonds to form ribbons containing alternating R22(8) and R44(18) rings, and these ribbons are linked into a three‐dimensional array by three independent π‐stacking interactions. Both (II) and (III) contain centrosymmetric dimers formed by π‐stacking interactions but hydrogen bonds are absent, and the molecules of (IV) are linked into centrosymmetric R22(8) dimers by C—H...N hydrogen bonds. Comparisons are made with a number of related compounds.  相似文献   

7.
Thiation of 1 by LR gave the corresponding 3,5‐dithioxo derivative 2 and the trimer 3 . Methylation of 1 afforded the S‐methyl derivative 4 . Compound 1 was fused with 6‐bromo‐2‐phenyl‐benzo[1,3‐d]oxazin‐4‐one ( 5 ) and gave 6 . Condensation of 1 with some acid derivatives 7a , 7b , 7c , 7d and/or 8a , 8b , 8c yielded thiadiazolo‐triazine derivatives 9a , 9b , 9c , 9d and 10a , 10b , 10c . Compounds 9a , 9c and 10c were hydrolyzed to furnish 11a , 11b , 11c Acetylation of 14 afforded mono‐ and diacetyl‐derivatives 15 and 16 . Benzoylation of 14 afforded mono‐ and dibezoyl‐derivatives 17 and 18 . 14 with some aromatic aldehydes yielded 9a , 9b , 9c . Reacting 14 with phenyl (iso‐ and/or isothio‐) cyanate gave the urea derivatives 20a , 20b . Thiation of 14 with P4S10 furnished 21 . The newly synthesized compounds were tested as antimicrobial agents. J. Heterocyclic Chem., (2011)  相似文献   

8.
The reaction of DL-malic and succinic acids with thiocarbohydrazide afforded 1,2-bis[4-amino-5-mercapto-1,2,4-triazol-3-yl]-ethane derivatives 3a and 3b. The reaction of 3a,b with phenacyl bromide and benzoin afforded 1,2-bis-1,2,4-triazolo [3,4-b][1,3,4]thiadiazine derivatives 4 and 5. The carboethoxymethylation of 3a and 3b gave 6a and 6b, respectively, and their reactions with carbon disulfide and benzoylisothiocyanate gave the 1,2-bis-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole 7 and 9, and with p-nitrobenzaldehyde gave a Schiff's base and dihydrothiadiazole 8. The structures were confirmed by using 1 H and 13 C NMR spectra. Selected members of these compounds were screened for antimicrobial activity.  相似文献   

9.
The reaction of 6-chloro-2-(1-methylhydrazino)quinoxaline 4-oxide 5 with a 2-fold molar amount of ethyl chloroglyoxalate gave ethyl 8-chloro-4-methyl-4H-1,3,4-oxadiazino[5,6-b]quinoxaline-2-carboxylate 6 , whose reaction with hydrazine hydrate afforded the C2-hydrazinocarbonyl derivative 7 . The reaction of compound 7 with nitrous acid provided the C2-acylazide derivative 8 , which was converted into the C2-amino 9 , C2-carbamate 11a-c, 12a,b , and C2-ureido 13a-c, 14 derivatives. The mass spectral fragmentation patterns were examined for compounds 10–14 , wherein the molecular ion peak did not appear in the mass spectra of compounds 10c, 11a-c, 12a,b, 13c , and 14.  相似文献   

10.
Treatment of 3‐(3‐methylbenzofuran‐2‐yl)‐3‐oxopropanenitrile ( 1 ) with phenyl isothiocyanate afforded the thioacetanilide derivative 3 , which when reacted with α‐haloketones, α‐halodiketones, and hydrazonoyl chlorides gives thiophene, 1,3‐oxathiole, and 1,3,4‐thiadiazole derivatives 6a,b, 10a,b and 14a–g , respectively. Treatment of 3‐methyl‐2‐benzofurancarboxylic acid hydrazide ( 15 ) with benzaldehyde followed by bromine afforded the 1,3,4‐oxadiazole derivative 18 . Treatment of the acid hydrazide 15 with phenyl isothiocyanate gave the thiosemicarbazide 20 . Compound 20 could be converted into 1,3,4‐oxadiazole, 1,2,4‐triazole‐3‐thione, and 1,3,4‐thiadiazole derivatives 21, 22 , and 23 , respectively. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:294–300, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20298  相似文献   

11.
A new 1,3,4‐thiadiazole bridging ligand, namely 3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoic acid (L), has been used to create the novel isomorphous complexes bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)copper(II)], [Cu2(C18H12N2O4S3)2(C3H7NO)2], (I), and bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)zinc(II)], [Zn2(C18H12N2O4S3)2(C3H7NO)2], (II). Both exist as centrosymmetric bicyclic dimers constructed through the synsyn bidentate bridging mode of the carboxylate groups. The two rings share a metal–metal bond and each of the metal atoms possesses a square‐pyramidal geometry capped by the dimethylformamide molecule. The 1,3,4‐thiadiazole rings play a critical role in the formation of a π–π stacking system that expands the dimensionality of the structure from zero to one. The thermogravimetric analysis of (I) indicates decomposition of the coordinated ligands on heating. Compared with the fluorescence of L in the solid state, the fluorescence intensity of (II) is relatively enhanced with a slight redshift, while that of (I) is quenched.  相似文献   

12.
Reaction of 1,3,4‐oxadiazolyl‐phenylthiourea 3 with hydrazonoyl halides gave the corresponding 1,3,4‐oxadiazolylimino‐1,3,4‐thiadiazoles. Also, treatment of 3 with ethyl chloroacetate and α‐haloketones afforded the corresponding thiazolidinone and thiazole derivatives, respectively. The structures of the synthesized products were confirmed by spectral data. Ten compounds were evaluated for their anti‐cancer activity against the colon carcinoma cell line (HCT‐116). The results revealed that 1,3,4‐thiadiazole derivatives 13d and 19c (IC50 = 0.73 and 0.86 µg/mL, respectively) have promising antitumor activity against colon carcinoma (HCT‐116), and most of the tested compounds showed moderate anti‐cancer activity.  相似文献   

13.
The synthesis of 1,3,4‐thiadiazole skeleton compounds exhibiting high fungicidal activities has been demonstrated. Thirteen novel 1,3,4‐thiadiazolyl‐pyrazolines compounds containing ferrocene were designed and synthesized from the ferrocenylchalcones intermediates 3a – 3m and the 2‐hydrazino‐5‐phenyl‐1,3,4‐thiadiazole intermediate 8 . All compounds were characterized by 1H NMR, 13C NMR, FT‐IR spectra, and HR‐MS, and the structure of one of the new compounds N‐(4‐phenyl‐1,3,4‐thiadiazol‐2‐yl)‐3‐ferrocenyl‐5‐phenyl‐pyrazoline 9a was further determined by X‐ray diffraction analysis. The preliminary results of a biological activity assay indicated that all the title compounds exhibited significant fungicidal activities against Pythium solani, Gibberella saubinetii, and Gibberella nicotiancola. Furthermore, compounds 9e and 9h displayed even higher fungicidal activities against the three fungal species compared with the control drug pyraclostrobin.  相似文献   

14.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

15.
The syntheses of 1∶1‐macrocycles 3 (n=1), unsymmetrical macrocycle 5 (m=0, n=1), 2∶2‐macrocycle 5 (m=n=1 and 2), 3∶3 macrocycle 7, and several open‐chain ethereal compounds prepared from 2,5‐dichloro‐1,3,4‐thiadiazole 1 and various polyethylene glycols dianions are described. Structural proofs are afforded by their mass and NMR spectral features. The quaternization studies of a few macrocycles with methyl iodide at elevated temperature furnished a diketo derivative 8 through a facile Hilbert–Johnson reaction.  相似文献   

16.
The reaction of 2H‐2‐oxobenzo[b]pyran‐3‐hydrazide ( 2 ) with carbon disulfide in basic DMF afforded potassium thiocarbamate 3 , which readily underwent heterocyclization upon its reaction with hydrazine and/or phenacyl bromide to yield 1,2,4‐tiazole ( 4 ) and thiazole 7 derivatives, respectively. Condensation of 4 with substituted phenacyl bromide and/or chloranil gave 1,2,4‐triazole[3,4‐b]thiadiazine ( 5a,b ) and 3,10‐bis‐[2H‐2‐oxobenzo[b]pyran‐3‐yl]‐6,13‐dichloro‐bis‐1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazino[5′,6′‐b:5′,6′‐e]cyclohexa‐1,4‐diene ( 6 ), respectively. Cyclization of thiosemicarbazide 10 by refluxing it in sodium hydroxide and/or phosphoryl chloride afforded triazole 13 and thiadiazole 15 derivatives, respectively. Also, 10 reacted with phenacyl bromide in the presence of anhydrous sodium acetate to give the oxothiazolidine derivative 17 . The structure of the synthesized compounds were confirmed by elemental analyses, IR, 1H NMR, and mass spectra. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:114–120, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10109  相似文献   

17.
《中国化学会会志》2017,64(10):1203-1212
Thiazolidin‐4‐one derivative 3 was synthesized by the transformation of chloroacetamide derivative 2 with NH4SCN.The condensation of 3 with p‐anisaldehyde afforded the corresponding arylidene derivative 4 . Also, the alkylation of chloroacetamide derivative 2 with different heterocyclic compounds was investigated. Annulation of 5‐amino‐3‐methylisoxazole ( 1 ) with α‐halocarbonyl compounds 12 and 14 furnished pyrrolo[3,2‐d]isoxazole and isoxazolo[5,4‐b]azepin‐6‐one derivatives 13 and 15 , respectively, while reaction of 1 with 1‐chloro‐4‐(chloromethyl)benzene gave the monoalkylated product 17 . The newly synthesized compounds were screened for their antitumor activity, and the geometry optimizations are in a good agreement with the experimentally observed data.  相似文献   

18.
Reaction of 1‐(5‐acetyl‐4‐methylthiazol–2‐yl)–3‐phenylthiourea 2 with hydrazonoyl chlorides ( 3a , 3b , 3c , 3d , 3e , 3f ) and 9 yielded the corresponding (thiazolyl)imino–1,3,4‐thiadiazole derivatives ( 6a , 6b , 6c , 6d , 6e , 6f ) and 12 , respectively. Reaction of 2 with ethyl chloroacetate 13 gave (thiazolyl)imino‐1,3‐thiazolidin‐4‐one derivative 15 , which upon condensation with aromatic aldehyde derivatives yielded the 5‐benzylidene derivatives ( 16a , 16b ). In addition, treatment of 2 with 3‐chloropenta‐2,4‐dione 17 afforded the corresponding (thiazolyl)imino‐1,3‐thiazole derivative 19 . The newly synthesized compounds were confirmed from their elemental analyses and spectral data.  相似文献   

19.
3‐Methyl‐2‐benzofurancarboxylic acid hydrazide ( 2 ) reacts with carbon disulfide and pota‐ ssium hydroxide to give the corresponding potassium carbodithioate salt 3 . Treatment of the latter salt with hydrochloric acid, hydrazine hydrate, and with phen‐ acyl bromide afforded the corresponding 1,3,4‐oxadia‐ zole‐5‐thione 4 , 4‐amino‐1,2,4‐triazole‐5‐thione 5 , and thiazolidine‐2‐thione 9 derivatives, respectively. The reaction of either 1,3,4‐oxadiazole‐5‐thione 4 or 4‐amino‐1,2,4‐triazole‐5‐thione 5 with phenacyl bromide resulted in the formation of 1,2,4‐triazolo[3, 4‐b]‐1,3,4‐thiadiazine derivative 8 . Treatment of compounds 3 or 4 with hydrazonoyl halides 10a–d furn‐ ished the same 1,3,4‐thiadiazol‐2‐ylidene derivatives 11a–d . The 7‐arylhydrazono‐1,2,4‐triazolo[3,4‐ b ]‐1, 3,4‐thiadiazine derivatives 12a–d were obtained either by treatment of 4‐amino‐1,2,4‐triazole‐5‐thione 5 with hydrazonoyl halides 10a–d or by coupling of the 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazine derivative 8 with diazonium salts. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:621–627, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20162  相似文献   

20.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号