首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Suwen Wang  Lei Jin  Zhongfang Li 《Ionics》2013,19(7):1027-1036
Polymer composite membranes based on sulfonated poly(phthalazinone ether sulfone) (SPPES) and zirconium sulfophenyl phosphate (ZrSPP) were prepared. Three ZrSPP concentrations were used: 10, 20, and 30 wt%. The membranes were characterized by infrared spectroscopy (IR), X-ray diffraction spectroscopy, thermal gravimetric analysis, and scanning electron microscopy (SEM). The IR results indicated the formation of intense hydrogen bonds between ZrSPP and SPPES molecules. The SEM micrographs showed that ZrSPP well dispersed with SPPES and form a lattice structure. The proton conductivity of the SPPES (degree of sulfonation (DS) 64 %)/ZrSPP (10 wt%) composite membrane reached 0.39 S/cm at 120 °C 100 % relative humidity and that of the 30 wt% of SPPES (DS 16.1 %)/ZrSPP composite membrane reached 0.18 S/cm at 150 °C. The methanol permeabilities of the SPPES/ZrSPP composite membranes were in the range of 2.1?×?10?8 to 0.13?×?10?8?cm2/s, much lower than that of Nafion®117 (10?6?cm2/s). The composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance properties.  相似文献   

2.
In order to reduce water uptake, swelling ratio, and methanol permeability in sulfonated proton exchange membranes (PEM), novel-sulfonated aromatic poly(ether ether nitrile)s-bearing pendant propenyl groups had been synthesized by direct copolymerization method. All the results showed that the propenyl groups were suitable cross-linkable groups, and that this method was an effective way to overcome the drawbacks of sulfonated polymers at high ion exchange capacity (IEC) values. By cross-linking, the water uptake, swelling ratio, and methanol diffusion could be restricted owing to the formation of compact network structure. For example, CSPEN-60 membranes showed the proton conductivity of 0.072 S cm?1 at 80 °C, while the swelling ratios and water uptake (17.9 and 60.7 %) were much lower than that of the SPEN-60 membrane (60.8 and 295.2 %). Meanwhile, a 1.1 × 10?7 cm2 s?1 of methanol diffusion was obtained which was much lower than that of Nafion 117 (14.1 × 10?7 cm2 s?1). Although the proton conductivity of the CSPEN-60 membranes is lower than that of the SPEN-60 membrane, the selectivity is much higher. The CSPEN-60 membrane exhibited the highest selectivity among the tested membranes, about 5.8 times higher compared with that of Nafion117.  相似文献   

3.
Composite fibrous membranes based on poly(acrylonitrile)(PAN)-poly(vinyl chloride)(PVC) have been prepared by electrospinning. The fibrous membranes are made up of fibers of 850- to 1,300-nm diameters. These fibers are stacked in layers to produce a fully interconnected pore structure. Polymer electrolytes were prepared by immersing the fibrous membranes in 1 M LiClO4-PC solution for 60 min. The condition of pure PAN polymer electrolytes is jelly, which has poor mechanical performance and cannot be used. But when PVC with a good mechanical stiffener was added to PAN, the condition of composite PAN?CPVC polymer electrolytes becomes free-standing. In addition, the optimum electrochemical properties have been observed for the polymer electrolyte based on PAN?CPVC (8:2, w/w) to show ionic conductivity of 1.05?×?10?3 S cm?1 at 25 °C, anodic stability up to 4.9 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. The promising results showed that fibrous PEs based on PAN?CPVC (8:2, w/w) have good mechanical stability and electrochemical properties. This shows a great potential application in polymer lithium-ion batteries.  相似文献   

4.
A series of novel sulfonated poly(arylene ether nitrile) (SPEN) containing carboxylic acid group was successfully synthesized by direct aromatic nucleophilic substitution polycondensation of 2,6-difluorobenzonitrile (DFBN), potassium 2,5-dihydroxybenzenesulfonate (SHQ), phenolphthalin (PPL), and 4,4′-biphenol (BP). The expected chemical structure of copolymers was confirmed by using FTIR and 1H NMR. To balance the performance for PEM applications, the proportion of four different components were controlled. The influences of the carboxylic acid groups on the structure and properties of SPEN, including thermal and mechanical properties, oxidative stability, water uptake, swelling, proton conductivity, and methanol permeability, were investigated in detail. The results revealed that SPEN membranes containing nitrile and carboxylic acid groups could lead low water absorption, swelling, and methanol penetration. In such a way, efficient proton transport channels were constructed by the formation of the hydrogen bonds. The proton conductivity of SPEN with high sulfonation degree (DS >?0.6) was higher than 0.05 S/cm and increased with increasing temperature. Especially, the conductivity of SPEN-0.6 and SPEN-0.7 reached up to 0.157 and 0.267 S/cm at 80 °C, respectively. Meanwhile, SPEN membranes exhibit low methanol permeability (0.13 ×?10-6– 0.52 ×?10-6 cm2·s?1). Consequently, the highest selectivity of SPEN-0.6 reaches 2.02 ×?105 S·cm?3·s, which is about 4.5 times higher than that of Nafion 117 (0.45 ×?105 S·cm?3·s). All the data prove that this series of membranes exhibits excellent comprehensive performance and might have potential applications in direct methanol fuel cells.  相似文献   

5.
Novel sulfonated poly (arylene ether nitrile) with pendant carboxylic group copolymers have been prepared as proton exchange membranes which were applied in direct methanol fuel cells (DMFCs). Compared with others, this work shows two main advantages: the crosslinked method is uncomplicated and the membranes were prepared via the hydroquinonesulfonic acid potassium salt (SHQ) as crosslinker mingled in sulfonated poly (arylene ether nitrile) (SPEN) to avoid the decrease of proton conductivity. The obtained crosslinked membranes exhibited improved dimensional stability; larger tensile strength than that of pure SPEN; and good thermal, mechanical properties. Furthermore, after crosslinking, the membranes had low methanol permeability values (0.78–3.4 × 10?7 cm2 s?1) and displayed good proton conductivities in the range of 0.0328–0.0385 S·cm?1 at room temperature. The sample of SPEN-SHQ-5 % showed highest selectivity value of 4.205 × 105 S·s cm?3, which was 11.9 times higher than that of Nafion 117. All of these results indicated that these membranes would be the potential candidates as proton exchange membranes (PEMs) in DMFCs.  相似文献   

6.
Zheng Zhong  Qi Cao  Xianyou Wang  Na Wu  Yan Wang 《Ionics》2012,18(1-2):47-53
Composite nanofibrous membranes based on poly (vinyl chloride) (PVC)?Cpoly (methyl methacrylate) (PMMA) were prepared by electrospinning and then they were soaked in liquid electrolyte to form polymer electrolytes (PEs). The introduction of PMMA into the PVC matrix enhanced the compatibility between the polymer matrix and the liquid electrolyte. The composite nanofibrous membranes prepared by electrospinning involved a fully interconnected pore structure facilitating high electrolyte uptake and easy transport of ions. The ion conductivity of the PEs increased with the increase in PMMA content in the blend and the ion conductivity of the polymer electrolyte based on PVC?CPMMA (5:5, w/w) blend was 1.36?×?10?3 S cm?1 at 25?°C. The polymer electrolyte based on PVC?CPMMA (5:5, w/w) blend presented good electrochemical stability up to 5.0?V (vs. Li/Li+) and good interfacial stability with the lithium electrode. The promising results showed that nanofibrous PEs based on PVC?CPMMA were of great potential application in polymer lithium-ion batteries.  相似文献   

7.
The preparation, thermal, morphological, and ion-conducting properties of new composite membranes based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and nitrilotri(methylphosphonic acid) (NMPA)/hexagonal boron nitride (hBN) were carried out throughout this work. Fourier transform infrared (FTIR) spectroscopy was used to characterize the interactions between host polymer, NMPA, and inorganic additive, hBN. Thermal properties of the materials were examined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests. TGA results illustrated that all composite membranes are thermally stable up to 200 °C. The surface topography of the films was investigated by scanning electron microscopy (SEM) and verified that hBN uniformly dispersed into the PAMPS-NMPA matrix. The crystallinity of the membranes was characterized by using X-ray diffraction (XRD). X-ray patterns support semicrystalline nature of the composite materials. At anhydrous conditions, the maximum proton conductivity was found as 3.2?×?10?5 S cm?1 at 150 °C for PAMPS-NMPA-3hBN via impedance analyzer.  相似文献   

8.
Gel polymer electrolyte based on poly(vinyl acetate) and poly(vinylidene fluoride) was prepared by solvent casting technique, in which the addition of plasticizers improves the conductivity of polymer membranes. The blend polymer electrolyte containing propylene carbonate (PC) exhibits the highest conductivity of 0.922?×?10?2 S cm?1 at room temperature because of the higher dielectric constant as compared to other plasticizers used in the present study. Material characterizations were done with the help of SEM and FT-IR techniques. The activation energy values were computed from ‘log σ?1/T’ Arrhenius plots.  相似文献   

9.
Two water-soluble and biodegradable polymers: xanthan gum (XG) and poly(vinyl alcohol) (PVA) were used to synthesize ecologically friendly solid polymer electrolyte (SPE) matrices. While XG is a natural polymer, PVA is a synthetic one, but both are colorless and form transparent membranes. To obtain ionic conductivity properties, the samples were doped with acetic acid and characterized by electrochemical impedance spectroscopy (EIS), X-ray diffraction, UV-Vis spectroscopy, and tensile test. The best results of ionic conductivity of 1.97 × 10?4 and 7.41 × 10?4 S/cm at room temperature and 80 °C, respectively, were obtained for the sample containing 55 wt% of acetic acid. Moreover, this electrolyte was found to be predominantly amorphous with transmittance in the visible region of 80% and absorbance values below 0.5 between 240 and 375 nm. Tensile test of this sample, applied up to 18 N of maximum force, resulted in strain of 2322% and Young’s modulus of 0.02 MPa. The obtained results showed that these new eco-friendly materials are promising for use as electrolytes in electrochemical devices.  相似文献   

10.
Gelatin-HCl protonic gel polymer electrolytes were obtained by crosslinking with formaldehyde in the presence of hydrochloric acid and glycerol as plasticizer and characterized in present study. The ionic conductivity measurements revealed the best value of 5.35?×?10?5 S cm?1 at room temperature. Factorial design analysis showed that influence of glycerol is more pronounced than influence of acid on ionic conductivity values. Moreover, the 90 % transparent membranes evidenced a linear increase of ionic conductivity values of 5.35?×?10?5 S cm?1 at 26.5 °C to 5.77?×?10?4 S cm?1 at 82.8 °C following Arrhenius type mechanism of charge mobility.  相似文献   

11.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

12.
《Solid State Ionics》2006,177(11-12):1083-1090
Poly(vinyl phosphate-b-styrene) (poly(VPP-b-St)) block copolymers were prepared via consecutive telomerization of vinyl acetate (VAc), atom transfer radical polymerization (ATRP) with styrene, saponification, and phosphorylation with phosphorus oxychloride. The resulting block copolymers were characterized by FT-IR and pH titration. Then, the block copolymers were blended with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to prepare direct methanol fuel cell (DMFC) membrane. The performance of poly(VPP-b-St)/PPO blend membranes was measured in terms of proton conductivity, methanol permeability, thermal and hydrolytic stability. The proton conductivities were in the range of 10 4 to 10 2 S/cm (60 °C, RH = 95%); the methanol permeabilities were in the range of 4.14 × 10 8 to 9.62 × 10 8 cm2/s (25 °C), and quite lower than that of Nafion® 117. Also, the thermal stability of the blend membranes was characterized by TGA, and was stable up to 400 °C; the blend membranes had better hydrolytic stability.  相似文献   

13.
In the present work, a series of single-ion conducting composite polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB)) and poly(polyethylene glycol methacrylate) (PPEGMA) were produced. PEGMA was polymerized into PPEGMA, and the Li(PVAOB) was prepared from poly (vinyl alcohol) (PVA), oxalic acid, and boric acid. Li(PVAOB) was blended with PPEGMA at different stoichiometric ratios to obtain a single-ion conducting system. All the electrolytes were characterized by Fourier transformation infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) techniques. These results verified the interaction between host and guest polymers, sufficient thermal stability within the measured conductivity domain, and the homogeneity of the composite electrolytes. The effect of PPEGMA onto the ionic conductivity was investigated using impedance spectroscopy. The Li(PVAOB)-60PPEGMA is the optimum content, and this sample has a maximum ionic conductivity of 3 × 10?4 S/cm at 100 °C which is approximately five orders of magnitude higher than neat Li(PVAOB). Activation energy (E a ) of ionic transport decreased from 11.9 to 0.27 kJ/mol, suggesting a much faster ionic mobility for higher PPEGMA-containing samples.  相似文献   

14.
The segregated graphene oxide(GO)/ultra-high-molecular-weight polyethylene (UHMWPE) composite films with various interfacial adhesion property were prepared by mechanical blending method from UHMWPE, GO, dodecyl amine (DA) functionalized graphene oxide(DA–GO) or uniform DA–GO/high density polyethylene (DA–GO/HDPE) powder. The results of XRD and XPS indicated that DA chain was successfully grafted onto GO sheets via a chemical method, which enhanced the interfacial adhesion between UHMWPE particles and GO sheets. The characterizations of POM and SEM proved that good segregated structure was only obtained in DA–GO/UHMWPE or DA–GO/HDPE/UHMWPE composite. Strong interfacial adhesion between fillers and matrix exhibits positive effect on gas barrier property. Compared to the GO/UHMWPE composite film, dramatic decrease in O2 permeability coefficient by 42.2 and 48.1%, from 15.4 × 10?14 to 8.9 × 10?14 and 8.0 × 10?14 cm3 cm cm?2 s?1 Pa?1, is achieved upon the addition of only 0.5 wt% fillers, respectively. The DSC results demonstrated that the enhanced gas barrier performance was ascribed to the strong interfacial adhesion between DA–GO/HDPE and UHWMPE matrix, rather than the crystallinity of UHWMPE matrix. Additionally, the decrease in UHMWPE particle size might be conducive to improving the gas barrier property of composite films due to the formation of more isolation layers perpendicular to the film plane.  相似文献   

15.
A series of proton-conducting composites has been synthesized from PVA/PAMPS [poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid)] using high molecular weight PVA (HMw-PVA). By applying high molecular weight PVA as a polymer matrix, a greater hydrophobicity of the membranes emerged, which endows them with reduced water uptake (70-90%) but high proton conductivity (0.06-0.1 S cm- 1), low methanol permeability (1/3 to 1/5 that of Nafion 117), and excellent oxidative stability towards Fenton's reagent. A DMFC fabricated with the above membrane showed a high power density of 15.8 mW cm- 2 at 30 °C, which reached 42.9 mW cm- 2 at 80 °C. An initial lifetime performance assessment in DMFC mode yielded a value of 70 h for stable cell operation.  相似文献   

16.
A new type of cross-linker, based on cyclotriphosphazene with six aldehyde groups, was used for the cross-linking of poly(vinyl alcohol) membranes. FTIR-ATR analysis indicated that cyclophosphazene reacted with poly(vinyl alcohol) by forming C–O–C bonds. TGA and DTG analysis showed that cross-linking improved the thermal stability. The swelling degree and pervaporation properties of cross-linked PVA membranes were also characterized. With increasing cross-linker concentration, swelling degrees and flux decrease while separation factors increase. Compared with PVA membranes cross-linked by glutaraldehyde, PVA membranes cross-linked by cyclophosphazene exhibited better selectivity and permeation rate.  相似文献   

17.
Free-standing composite polymer membranes comprising of high molecular weight poly (ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO4) and Li6La2BaTa2O12 (LLBTO) garnet oxide as filler were developed via standard solution-casting method. The as-synthesized composite membranes were investigated through powder x-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and impedance spectroscopy techniques for their phase, thermal, morphological, and electrical properties, respectively. The lithium ion conductivity of polymer composite membranes consisting of PEO8/LiClO4 with various weight percents (5, 10, 15, 20, 25, and 30) of LLBTO were evaluated. We demonstrated a significant enhancement in Li+ conductivity with the addition of LLBTO to the polymer-lithium salt complex. Among the investigated membranes, the composite containing 20 LLBTO wt% garnet oxide exhibits maximized room temperature (30 °C) Li+ conductivity of 2.03 × 10?4 S cm?1 and electrochemical stability greater than 4.5 V.  相似文献   

18.
Polymer electrolyte system based on poly(vinyl alcohol) (PVA)-chitosan blend doped with ammonium bromide (NH4Br) has been prepared by solution cast method. Fourier transform infrared (FTIR) spectroscopy analysis confirms the complexation between salt and polymer host. The highest ionic conductivity obtained at room temperature is (7.68?±?1.24)?×?10?4 S cm?1 for the sample comprising of 30 wt% NH4Br. X-ray diffraction (XRD) patterns reveal that PVA-chitosan with 30 wt% NH4Br exhibits the most amorphous structure. Thermogravimetric analysis (TGA) reveals that the electrolytes are stable until ~260 °C. The conductivity variation can also be explained by field emission scanning electron microscopy (FESEM) study. Dielectric properties of the electrolytes follow non-Debye behavior. The conduction mechanism of the highest conducting electrolyte can be represented by the correlated barrier hopping (CBH) model. From linear sweep voltammetry (LSV) result, the highest conducting electrolyte is electrochemically stable at 1.57 V.  相似文献   

19.
This paper reports the use of a polymer inclusion membranes (PIMs) for direct determination of Al(III) ions in natural water by using a fluorescence based optode. The best composition of the PIMs consisted of 60 wt.% (m/m) poly (vinyl chloride) (PVC) as the base polymer, 20 wt.% (m/m) triton X-100 as an extractant, 20 wt.% (m/m) dioctyl phthalate (DOP) as plasticizer and morin as the reagent, was used in this study. The inclusion of triton X-100 was used for enhancing the sorption of Al(III) ions from liquid phase into the membrane phase, thus increasing the optode fluorescence intensity. The optimized optode was characterized by a linear calibration curve in the range from 7.41?×?10?7 to 1.00?×?10?4 molL?1 of Al(III), with a detection limit of 5.19?×?10?7 molL?1. The response of the optode was 4 min and reproducible results were obtained for eight different membranes demonstrated good membrane stability. The optode was applied to the determination of Al(III) in natural water samples. The result obtained is comparable to atomic absorption spectrometry method.  相似文献   

20.
《Composite Interfaces》2013,20(4-6):523-534
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis followed by condensation. The obtained membranes were characterized by Fourier transform infrared spectroscopy, wide-angle x-ray diffraction and differential scanning calorimetry. A remarkable decrease in degree of swelling was observed with increasing TEOS content in membranes and is attributed to the formation of hydrogen bonding and covalent bonds in the membrane matrix. The pervaporation performance of these membranes for the separation of water–acetic acid mixtures was investigated in terms of feed concentration and the content of TEOS used as cross-linking agent. The membrane containing 1 : 2 mass ratio of PVA and TEOS gave the highest separation selectivity of 1116 with a flux of 3.33 × 10?2kg/m2h at 30°C for 10 mass% of water in the feed. Except for membrane M-1, the observed values of water flux are close to the values of total flux in the investigated composition range, signifying that the developed membranes are highly water selective. From the temperature dependence of diffusion and permeation values, the Arrhenius apparent activation parameters have been estimated. The resulting activation energy values obtained, showing that water permeation is lower than that of acetic acid, suggest that the membranes have higher separation efficiency. The activation energy values calculated for total permeation and water permeation are close to each other for all the membranes except membrane M-1, signifying that coupled-transport is minimal because of the higher selective nature of membranes. The negative heat of sorption values (ΔH s) for water in all the membranes suggests a Langmuir mode of sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号