首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give sufficient conditions for the convergence of the double Fourier integral of a complex-valued function fL 1(?2) with bounded support at a given point (x 0,y 0) ∈ ?2. It turns out that this convergence essentially depends on the convergence of the single Fourier integrals of the marginal functions f(x,y 0), x ∈ ?, and f(x 0,y), y ∈ ?, at the points x:= x 0 and y:= y 0, respectively. Our theorem applies to functions in the multiplicative Zygmund classes of functions in two variables.  相似文献   

2.
Tamura proved that for any semigroup word U(x, y), if every group satisfying an identity of the form yx ~ xU(x, y)y is abelian, then so is every semigroup that satisfies that identity. Because a group has an identity element and the cancellation property, it is easier to show that a group is abelian than that a semigroup is. If we know that it is, then there must be a sequence of substitutions using xU(x, y)y ~ yx that transforms xy to yx. We examine such sequences and propose finding them as a challenge to proof by computer. Also, every model of y ~ xU(x, y)x is a group. This raises a similar challenge, which we explore in the special case y ~ x m y p x n . In addition, we determine the free model with two generators of some of these identities. In particular, we find that the free model for y ~ x 2 yx 2 has order 32 and is the product of D 4 (the symmetries of a square), C 2, and C 4, and point out relations between such identities and Burnside’s Problem concerning models of x n ~ y n . We also examine several identities not related to groups.  相似文献   

3.
In this paper we study centers of planar polynomial Hamiltonian systems and we are interested in the isochronous ones. We prove that every center of a polynomial Hamiltonian system of degree four (that is, with its homogeneous part of degree four not identically zero) is nonisochronous. The proof uses the geometric properties of the period annulus and it requires the study of the Hamiltonian systems associated to a Hamiltonian function of the form H(xy)=A(x)+B(xy+C(xy2+D(xy3.  相似文献   

4.
In this paper it is shown that a finite partial (x, x, y) = y 3-quasigroup can be embedded in a finite (x, x, y) = y 3-quasigroup. This result coupled with the technique of proof is then used to show that a finite partial almost Steiner 3-quasigroup {(x, x, y) = y, (x, y, z) = (x, z, y) = (y, x, z)} can be embedded in a finite almost Steiner 3-quasigroup. Almost Steiner 3-quasigroups are of more than passing interest because just like Steiner 3-quasigroups ( = Steiner quadruple systems) all of their derived quasigroups are Steiner quasigroups.  相似文献   

5.
We solve the inhomogeneous linear first order differential equations of the form y′(x) ? λy(x) = Σ m=0 a m (x ? c) m , and prove an approximation property of exponential functions. More precisely, we prove the local Hyers-Ulam stability of linear first order differential equations of the form y′(x) = λy(x) in a special class of analytic functions.  相似文献   

6.
A quasi-metric space (X,d) is called sup-separable if (X,ds) is a separable metric space, where ds(x,y)=max{d(x,y),d(y,x)} for all x,yX. We characterize those preferences, defined on a sup-separable quasi-metric space, for which there is a semi-Lipschitz utility function. We deduce from our results that several interesting examples of quasi-metric spaces which appear in different fields of theoretical computer science admit semi-Lipschitz utility functions. We also apply our methods to the study of certain kinds of dynamical systems defined on quasi-metric spaces.  相似文献   

7.
We prove sufficient conditions for the convergence of the integrals conjugate to the double Fourier integral of a complex-valued function fL 1 (?2) with bounded support at a given point (x 0, g 0) ∈ ?2. It turns out that this convergence essentially depends on the convergence of the integral conjugate to the single Fourier integral of the marginal functions f(x, y 0), x ∈ ?, and f(x 0, y), y ∈ ?, at x:= x 0 and y:= y 0, respectively. Our theorems apply to functions in the multiplicative Lipschitz and Zygmund classes introduced in this paper.  相似文献   

8.
We prove a generalization of an old conjecture of Pillai (now a theorem of Stroeker and Tijdeman) to the effect that the Diophantine equation 3x−2y=c has, for |c|>13, at most one solution in positive integers x and y. In fact, we show that if N and c are positive integers with N?2, then the equation |(N+1)xNy|=c has at most one solution in positive integers x and y, unless (N,c)∈{(2,1),(2,5),(2,7),(2,13),(2,23),(3,13)}. Our proof uses the hypergeometric method of Thue and Siegel and avoids application of lower bounds for linear forms in logarithms of algebraic numbers.  相似文献   

9.
It is well known that a function f of the real variable x is convex if and only if (x,y)→yf(y -1 x),y>0 is convex. This is used to derive a recursive proof of the convexity of the multiplicative potential function. In this paper, we obtain a conjugacy formula which gives rise, as a corollary, to a new rule for generating new convex functions from old ones. In particular, it allows to extend the aforementioned property to functions of the form (x,y)→g(y)f(g(y)-1 x) and provides a new tool for the study of the multiplicative potential and penalty functions. Received: June 3, 1999 / Accepted: September 29, 2000?Published online January 17, 2001  相似文献   

10.
A tournament T on any set X is a dyadic relation such that for any x, yX (a) (x, x) ? T and (b) if xy then (x, y) ∈ T iff (y, x) ? T. The score vector of T is the cardinal valued function defined by R(x) = |{yX : (x, y) ∈ T}|. We present theorems for infinite tournaments analogous to Landau's necessary and sufficient conditions that a vector be the score vector for some finite tournament. Included also is a new proof of Landau's theorem based on a simple application of the “marriage” theorem.  相似文献   

11.
Some general remarks are made concerning the equation f(x, y) = qn in the integral unknowns x, y, n, where f is an integral form and q > 1 is a given integer. It is proved that the only integral triads (x, y, n) satisfying x3 + 3y3 = 2n are (x, y, n) = (?1, 1, 1), (1, 1, 2), (?7, 5, 5,), (5, 1, 7).  相似文献   

12.
It is proved that the equation of the title has a finite number of integral solutions (x, y, n) and necessary conditions are given for (x, y, n) in order that it can be a solution (Theorem 2). It is also proved that for a given odd x0 there is at most one integral solution (y, n), n ≥ 3, to x03 + 3y3 = 2n and for a given odd y0 there is at most one integral solution (x, n), n ≥ 3, to x3 + 3y03 = 2n.  相似文献   

13.
In this paper, we investigate the action of the pseudogroup of all point transformations on the bundle of equations y″=u 0(x,y)+u 1(x,y)y′+u 2(x,y)(y′)2+u 3(x,y)(y′)3. We calculate the 1st nontrivial differential invariant of this action. It is a horizontal differential 2-form with values in some algebra, it is defined on the bundle of 2-jets of sections of the bundle under consideration. We prove that this form is a unique obstruction to linearizability of these equations by point transformations.  相似文献   

14.
An MV-algebra A=(A,0,¬,⊕) is an abelian monoid (A,0,⊕) equipped with a unary operation ¬ such that ¬¬x=x,x⊕¬0=¬0, and y⊕¬(y⊕¬x)=x⊕¬(x⊕¬y). Chang proved that the equational class of MV-algebras is generated by the real unit interval [0,1] equipped with the operations ¬x=1?x and xy=min(1,x+y). Therefore, the free n-generated MV-algebra Free n is the algebra of [0,1]-valued functions over the n-cube [0,1] n generated by the coordinate functions ξ i ,i=1, . . . ,n, with pointwise operations. Any such function f is a McNaughton function, i.e., f is continuous, piecewise linear, and each piece has integer coefficients. Conversely, McNaughton proved that all McNaughton functions f: [0,1] n →[0,1] are in Free n . The elements of Free n are logical equivalence classes of n-variable formulas in the infinite-valued calculus of ?ukasiewicz. The aim of this paper is to provide an alternative, representation-free, characterization of Free n .  相似文献   

15.
We prove that the operator ${Tf(x,y)=\int^\pi_{-\pi}\int_{|x^{\prime}|<|y^{\prime}|} \frac{e^{iN(x,y) x^{\prime}}}{x^{\prime}}\frac{e^{iN(x,y) y^{\prime}}}{y^{\prime}}f(x-x^{\prime}, y-y^{\prime}) dx^{\prime} dy^{\prime}}$ , with ${x,y \in[0,2\pi]}$ and where the cut off ${|x^{\prime}|<|y^{\prime}|}$ is performed in a smooth and dyadic way, is bounded from L 2 to weak- ${L^{2-\epsilon}}$ , any ${\epsilon > 0 }$ , under the basic assumption that the real-valued measurable function N(x, y) is “mainly” a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman’s proof of a.e. convergence of Fourier series of L 2 functions.  相似文献   

16.
The configuration of a homothetic motion in the N-body problem is called a central configuration. In this paper, we prove that there are exactly three planar non-collinear central configurations for masses x, −x, y, −y with xy (a parallelogram and two trapezoids) and two planar non-collinear central configurations for masses x, −x, x, −x (two diamonds). Except the case studied here, the only known case where the four-body central configurations with non-vanishing masses can be listed is the case with equal masses (A. Albouy, 1995-1996), which requires the use of a symbolic computation program. Thanks to a lemma used in the proof of our result, we also show that a co-circular four-body central configuration has non-vanishing total mass or vanishing multiplier.  相似文献   

17.
A difference polynomial is one of the form P(x, y) = p(x) ? q(y). Another proof is given of the fact that every difference polynomial has a connected zero set, and this theorem is applied to give an irreducibility criterion for difference polynomials. Some earlier problems about hereditarily irreducible polynomials (HIPs) are solved. For example, P(x, y) is called a HIP (two-variable case) if P(a(x), b(y)) is always irreducible, and it is shown that such two-variable HIPs actually exist.  相似文献   

18.
Bumby proved that the only positive solutions to the quartic Diophantine equation 3x 4 ? 2y 2 = 1 are (x, y) = (1, 1), (3, 11). In this paper, we extend this result and prove that if the class number of the field ${{\rm Q}(\sqrt{1-3a^{2}})}Bumby proved that the only positive solutions to the quartic Diophantine equation 3x 4 − 2y 2 = 1 are (x, y) = (1, 1), (3, 11). In this paper, we extend this result and prove that if the class number of the field Q(?{1-3a2}){{\rm Q}(\sqrt{1-3a^{2}})} is not divisible by 2, the equation 3a 2 x 4By 2 = 1 has at most two solutions. However, both solutions occur in only one case, a = 1, b = 2, as solved by Bumby. The proof utilizes the law of quadratic reciprocity that seems very rare in solving Diophantine equations, and the solution will be also obtained effectively through the proof when it exists.  相似文献   

19.
Let (X, d) be a locally compact separable ultrametric space. Let D be the set of all locally constant functions having compact support. Given a measure m and a symmetric function J(x, y) we consider the linear operator LJf(x) = ∫(f(x) ? f(y)) J(x, y)dm(y) defined on the set D. When J(x, y) is isotropic and satisfies certain conditions, the operator (?LJ, D) acts in L2(X,m), is essentially self-adjoint and extends as a self-adjoint Markov generator, its Markov semigroup admits a continuous heat kernel pJ (t, x, y). When J(x, y) is not isotropic but uniformly in x, y is comparable to isotropic function J(x, y) as above the operator (?LJ, D) extends in L2(X,m) as a self-adjointMarkov generator, its Markov semigroup admits a continuous heat kernel pJ(t, x, y), and the function pJ(t, x, y) is uniformly comparable in t, x, y to the function pJ(t, x, y), the heat kernel related to the operator (?LJ,D).  相似文献   

20.
Models of spatially homogeneous walks in the quarter plane $\mathbf{ Z}_{+}^{2}$ with steps taken from a subset $\mathcal{S}$ of the set of jumps to the eight nearest neighbors are considered. The generating function (x,y,z)?Q(x,y;z) of the numbers q(i,j;n) of such walks starting at the origin and ending at $(i,j) \in\mathbf{ Z}_{+}^{2}$ after n steps is studied. For all non-singular models of walks, the functions x?Q(x,0;z) and y?Q(0,y;z) are continued as multi-valued functions on C having infinitely many meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result: namely, for all the 51 walks which admit a certain infinite group of birational transformations of C 2, the interval $]0,1/|\mathcal{S}|[$ of variation of z splits into two dense subsets such that the functions x?Q(x,0;z) and y?Q(0,y;z) are shown to be holonomic for any z from the one of them and non-holonomic for any z from the other. This entails the non-holonomy of (x,y,z)?Q(x,y;z), and therefore proves a conjecture of Bousquet-Mélou and Mishna in Contemp. Math. 520:1?C40 (2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号