首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper is primarily an assessment of laser-induced water jets for boring rock surfaces. It also reports the result of preliminary experiments of pulsed Ho:YAG laser-induced jets applied to drill a submerged rock specimen. The irradiation of pulsed Ho:YAG laser beams at 3 Hz inside a thin metal tube produces intermittent water vapor bubbles which result in liquid jet discharge from the exit of the metal tube. The laser-induced water jets are visualized by shadowgraphs and images are recorded by a high-speed digital video camera. High stagnation pressures were eventually generated by the jet impingements. Simultaneously shock waves of about 22.7 MPa were generated at bubble collapse, which effectively cracked the surface of the rock specimens. Repeated exposures of these laser-induced jets against submerged rock specimens have a potential to practically bore holes on rock surfaces.  相似文献   

2.
This paper describes a preliminary investigation of the characteristics of high-speed water jets injected into water from an orifice. The high-speed jets were generated by the impact of a projectile launched by a horizontal single-stage powder gun and submerged in a water test chamber. The ensuing impact-driven high-speed water jets in the water were visualized by the shadowgraph technique, and the images were recorded by a high-speed digital video camera. The processes following such jet injection into water, the jet-induced shock waves, shock wave propagation, the bubble behavior, bubble collapse-induced rebound shock waves and bubble cloud re-generation were observed. Peak over-pressures of about 24 and 35 GPa measured by a Polyvinylidence difluoride (PVDF) piezoelectric film pressure sensor were generated by the jet impingement and the bubble impingement, respectively. The peak over-pressure was found to decrease exponentially as the stand-off distance between the PVDF pressure sensor and the nozzle exit increases.  相似文献   

3.
An experimental investigation was made of cavitation phenomena induced by underwater shock wave focusing applied to the extracorporeal microexplosion lithotripsy (microexplosion ESWL). Firstly an underwater microexplosion generated by detonation of a 10 mg silver azide pellet was studied and secondly underwater shock focusing and its induced cavitation phenomena were investgated. Underwater shock wave was focused by using a semi-ellipsoidal reflector in which a shock wave generated at the first focal point of the reflector was reflected and focused at the second focal point. It is found that an explosion product gas bubble did not produce any distinct rebound shocks. Meantime cavitation appeared after shock focusing at the second focal point where expansion waves originated at the exit of the reflector were simultaneously collected. A shock/bubble interaction is found to contribute not only to urinary tract stone disintegration but also tissue damage. The cavitation effect associated with the microexplosion ESWL was weaker in comparison with a spark discharge ESWL. The microexplosion ESWL is an effective method which can minimize the number of shock exposures hence decreasing tissue damage by conducting precise positioning of urinary tract stones.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
This paper describes the generation of high-speed liquid jets by the impact acceleration method using a vertical two-stage light gas gun specially designed and constructed for this project at the Interdisciplinary Shock Wave Research Laboratory, Institute of Fluid Science, Tohoku University. Results of pressure measurements and double exposure holographic interferometric visualization and high speed video-recording of shadow graph images of waves propagating in a conically shaped container of liquid are included. In the experiments, an optical fiber pressure transducer of 0.1 mm in diameter and resonant frequency of 100 MHz was used for precise pressure measurements of waves in the container at 300 m/s projectile impacts. To verify the contribution of longitudinal and transversal waves created in metal containers, we used a 10.6 mm × 10.6 mm container of water with thick acrylic observation windows and quantitatively visualized waves by using double exposure holographic interferometry. We found that: (1) longitudinal and transversal waves did exist in the metal parts of the container and also in the acrylic observation windows; (2) before the nozzle flow started, these waves and their reflected waves coalesced with the main impact generated shock wave; (3) the primary jet was driven by pressures of 12.4 GPa caused by the 300 m/s projectile impingement; (4) successive shock reflections inside the container of liquid drove intermittent multiple liquid jets; (5) the contribution of released longitudinal and transversal waves to multiple jet formation is marginal; and (6) negative pressures detected with the optical fiber pressure transducer are attributable to impact flash and have no physical significance.   相似文献   

5.
An experimental and numerical study of underexpanded free sonic jet flows issuing from rectangular, elliptical and slot nozzles has been undertaken. Aspect ratios (AR) of 1, 2, and 4 are described at pressure ratios (exit plane pressure to ambient pressure), of 2 and 3. There is good qualitative agreement between the experimental observations and the numerical predictions. In the case of rectangular jets, a complex system of shock waves forming the incident shock system is identified. This shock wave system originates at the corners of the nozzle exits, and proceeds downstream. Mach reflections are found to occur on the incident shock wave surface as well as the presence of a Mach disk terminating the first jet cell. This Mach disk has the shape of a square, a hexagon, or an octagon depending on the nozzle shape. For slot and elliptical jets, the formation of the incident shock wave was not observed along the minor axis plane of the nozzle for AR > 2. The incident shock wave was observed to originate downstream of the nozzle exit in the major axis plane. This wave system undergoes a transition to Mach reflection as it propagates downstream of the nozzle exit. In all cases tested, the shape of the jet boundary is significantly distorted. In rectangular jets, the narrowing of the jet boundary along the diagonal axis of the nozzle exit is observed, and in the case of the elliptical and slot jets axis switching is noted.  相似文献   

6.
 This paper describes experiments in which a shock wave, emanating from the collapse of a cavitation bubble, causes a second bubble to collapse, thereby producing a liquid jet. A comparison of the jets formed by bubble collapse in dilute solutions of polyacrylamide and polyethylene oxide, and in their Newtonian counterparts, shows that in the polymer solutions liquid jet development is markedly suppressed. The implications of these findings are discussed in the context of cavitation damage. Received: 3 September 1998/Accepted: 23 July 1999  相似文献   

7.
Experimental investigations of Laval nozzle flow show for relatively low supply to exit pressure ratios, which correspond to shock wave positions close to the nozzle throat, three different, oscillatory instabilities.
  1. Shock pattern oscillations where the root of a λ-like shock front remains nearly in constant position, but where the proportion between the normal part and the oblique part of the shock changes periodically.
  2. Shock wave and separation bubble oscillations where the motion of the shock wave is accompanied by displacements of the separation bubble.
  3. Flow rate oscillations where the shock waves leave periodically through the nozzle throat in upstream direction.
  相似文献   

8.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

9.
The structure of particle-laden,underexpanded free jets   总被引:1,自引:0,他引:1  
M. Sommerfeld 《Shock Waves》1994,3(4):299-311
Underexpanded, supersonic gas-particle jets were experimentally studied using the shadowgraph technique in order to examine the influence of the dispersed particles on the shape of the free jet and the structure of the imbedded shock waves. The particle mass loading at the nozzle exit was varied between zero and one, and two sizes of particles (i.e. spherical glass beads) with mean number diameters of 26 and 45 m were used. It was found that the Mach-disc moves upstream towards the orifice with increasing particle loading. The laser light sheet technique was also used to visualize the particle concentration distribution within the particle jet and the spreading rate of the particle jet. Furthermore, the particle velocity along the jet centerline was measured with a modified laser-Doppler anemometer. These measurements revealed that the particles move considerably slower than the gas flow at the nozzle exit. This is mainly the result of the particle inertia, whereby the particles are not accelerated to sonic speed in the converging part of the nozzle.In order to further explore the particle behavior in the free jet, numerical studies were performed by a combined Eulerian/Lagrangian approach for the gas and particle phases, including full coupling between the two phases. The numerical results showed that the application of different particle velocities at the nozzle exit as the inlet conditions, which were below the sonic speed of the gas phase has a significant influence on the free jet shape and the configuration of the shock waves. These results demonstrate that the assumption of equilibrium flow (i.e. zero slip between the phases) at the nozzle exit which has been applied in most of the previous numerical studies is not justified in most cases. Furthermore, the numerical calculations of the free jet shape and the particle velocity along the jet axis were compared with the measurements. Although correlations for rarefaction and compressibility effects in the drag coefficient were taken into account, the particle velocity along the center line was considerably overpredicted.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

10.
针对具有不同类型喷管的爆轰管在水下爆轰中形成的燃气射流问题,搭建了爆轰实验平台,研究了单次爆轰过程中尾部喷管对水下气泡形态与压力特征的影响。采用数字粒子图像测速技术对高速摄影机拍摄得到的气泡脉动图片进行流场可视化分析,得到各喷管工况下的气泡速度场。为了确认爆轰管内是否形成稳定爆轰波,并观察爆轰波在气液两相界面上的透反射特性,爆轰管尾部安装有2个动态压力传感器,同时在距离喷管一定距离处设置一个水下爆炸传感器,以监测水中传播的压力波。结果表明:扩张喷管工况下的气泡脉动过程与直喷管工况基本一致,但扩张喷管提高了燃气射流速度,气泡膨胀体积更大;因为燃气射流的持续性,收敛喷管工况下的气泡脉动过程具有明显差异,气泡膨胀体积较小,但气泡二次脉动时长相较于一次脉动时长衰减更小;扩张喷管提高了气泡脉动强度,扩张喷管工况下的气泡脉动压力与透射冲击波压力远大于直喷管工况下的气泡脉动压力与透射冲击波压力;收敛喷管工况下的气泡脉动压力与透射冲击波压力都较小,但收敛喷管燃气射流的持续性减缓了气泡脉动压力的衰减速度。相比于直喷管,扩张喷管工况下的气泡脉动时间、气泡脉动压力与透射冲击波压力都更大。收敛喷管工况下的气泡...  相似文献   

11.
水下爆炸气泡破坏效应是水中兵器的重要毁伤模式之一。为研究水下爆炸气泡脉动现象,建立了小当量水下爆炸实验系统,并进行了爆炸当量分别为0.125g、1.0g、3.375g和8g TNT的水下爆炸实验。采用球形PETN装药并中心起爆,产生球形对称的气泡和冲击波载荷,并利用高速摄像系统记录水下爆炸气泡脉动过程,以及布置压力传感器测量水中冲击波压力。实验获得了清晰的水下爆炸气泡脉动过程图像,得到了冲击波和气泡脉动压力曲线。对数字化图像进行判读,得到气泡脉动直径和周期。另外根据冲击波曲线测量了气泡脉动周期,对比分析了气泡脉动相关参数。结果表明,高速摄像数据测量的气泡直径与经验公式较接近,高速摄像测量的气泡周期与冲击波曲线测量的气泡脉动周期以及经验公式结果具有较好的一致性。本文提出的实验技术安全、经济、可靠,气泡脉动参数判读精确,满足水下爆炸气泡脉动研究需求。  相似文献   

12.
舱段结构在气泡射流作用下的毁伤效果   总被引:2,自引:0,他引:2  
为研究水下爆炸气泡载荷对船舶局部结构的毁伤效果,设计建造了实尺度舱段模型,并进行水下 爆炸实验,测量了水中压力、气泡脉动周期、舱段外板结构的动应变与塑性变形。分析了不同冲击因子作用下 舱段结构的动态响应,并结合水中压力测量结果,探讨了气泡射流的成因。在此基础之上,分析了气泡射流载 荷的影响范围以及外板在不同载荷作用下的毁伤模式。实验结果表明,相比冲击波载荷,在某些情况下射流 冲击载荷引起的结构响应更剧烈,毁伤效果更严重,因此在中近场水下爆炸作用下,气泡射流冲击载荷对船体 结构的影响不能忽视。  相似文献   

13.
The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the liquid. The dynamics is explored for different bubble wall normal distances and triggering shock intensities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pressure and temperatures are found also at the wall, confirming that the strong localized loading combined with the jet impinging the wall is a potential source of substrate damage induced by the cavitation.  相似文献   

14.
Experimental results on the shock structure of dual co-axial jets are presented. The effects of the geometric parameters of the inner nozzle, jet static pressure ratio (ratio of the exit plane static pressures of the inner and outer nozzles) and the ratio of outer to inner nozzle throat area on the shock structure were studied. A superimposed outer and inner jet structure was observed in the schlieren photographs. The inner flow is compressed by the outer flow resulting in the formation of a Mach disc and an exit shock. A parameter incorporating the effect of Mach number of the inner nozzle and jet static pressure ratio was found to correlate the observations regarding the Mach disc location.  相似文献   

15.
海上作战时,近场水下爆炸形成的水射流能造成水面舰船结构的严重局部毁伤。为了研究近场爆炸时舰船底部水射流的形成机理及规律,开展了TNT当量2.5 g的炸药在固支方板底部不同爆距下起爆的水下爆炸实验。结果表明,气泡坍塌形成水射流的过程随着爆距的增加由吸附式向非吸附式转化。接着,基于ABAQUS软件采用CEL方法开展了系列数值模拟,结果表明:爆距在0.821~0.867倍最大气泡半径时,存在吸附式射流向非吸附式射流转化的临界点;固支方板加快了气泡坍塌的进程,炸药与钢板间的距离越小则射流形成的时间越早;射流形成过程中最大速度和射流击中钢板时速度均随着爆距的增大先增大后减小,并在临界点附近达到最大值,射流速度最大可达621 m/s,射流击中钢板时速度最大可达269 m/s。最后,给出了射流开始形成时间、射流最大速度、射流最大速度出现时间、射流击中钢板速度和射流击中钢板时间与距离参数的函数关系式。  相似文献   

16.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

17.
The lecture begins by sketching some of the background to contemporary jet aeroacoustics. Then it reviews scaling laws for noise generation by low-Mach-number airflows and by turbulence convected at not-so-low Mach numbers. These laws take into account the influence of Doppler effects associated with the convection of aeroacoustic sources.Next, a uniformly valid Doppler-effect approximation exhibits the transition, with increasing Mach number of convection, from compact-source radiation at low Mach numbers to a statistical assemblage of conical shock waves radiated by eddies convected at supersonic speed. In jets, for example, supersonic eddy convection is typically found for jet exit speeds exceeding twice the atmospheric speed of sound.The lecture continues by describing a new dynamical theory of the nonlinear propagation of such statistically random assemblages of conical shock waves. It is shown, both by a general theoretical analysis and by an illustrative computational study, how their propagation is dominated by a characteristic bunching process. That process—associated with a tendency for shock waves that have already formed unions with other shock waves to acquire an increased proneness to form further unions—acts so as to enhance the high-frequency part of the spectrum of noise emission from jets at these high exit speeds.  相似文献   

18.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

19.
One of the key characteristics of the asymmetric collapse of a cavitation bubble near a rigid boundary is the development of a high speed liquid jet that penetrates the interior of the bubble, impacting on the other side to yield a toroidal bubble. After the formation of the toroidal bubble, a vigorous splash may occur that can lead to pressures on the boundary an order of magnitude greater than the impact pressures associated with the jet. Qualitative agreement with available experimental data is found although, as the bubble approaches minimum volume, shock waves are also observed which further complicate our full understanding of the mechanisms for damage.  相似文献   

20.
Highly complicated shock wave dynamics has been numerically calculated by solving the Euler equations for a circular shock tube suddenly expanded three times of the original tube diameter atx=0. Shock waves of different shock Mach number,M s =1.5 and 2.0, have produced remarkably distinct blast jet structures. A planar shock wave took its final form after the blast by repeated Mach reflections of the blast wave: the first one at the wall and the second one at the central axis. The central Mach disc overtook and merged with the annular Mach stem before the planar shock wave was formed. In contrast to the blast wave which would propagate spherically in an open space, the present blast wave undergoes complex morphological transformation in the restricted flow passage, resulting in an unstable and oscillatory blast jet structure of highly rotational nature. The slipstream tube emanating from the shock tube exit corner decomposed into a chain of small vortex rings that interacted with the barrel shock of the jet, which caused periodic collapse of the jet structure. The finite volume-FCT formulation equipped with the time-dependenth-refinement adaptive unstructured triangular mesh technique in the present paper has contributed to resolution of the intricate physical discontinuities developing in the blast flow fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号