首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Density functional theory (DFT) calculations with different exchange‐correlation functionals were performed for a mixed valence Fe(II)/Fe(III) binuclear complex with μ‐methoxo and two μ‐carboxylate bridging ligands, (1) with geometry optimizations being performed for all possible spin multiplicities (MS = 2, 4, 6, 8, and 10). Within the exchange‐correlation functionals studied, only the hybrid GGA functionals B3P and B3LYP and also the pure GGA functional RPBE, predicts the geometry with high spin (S = 9/2) to be more stable than the geometry with low spin state (S = 1/2) by 20 kcal/mol, in agreement with the experimental findings. These functionals also predict the same stability order for the different spin states, being MS = 10>8>6>2>4. The meta‐GGA functionals TPSS and TPSSh and also the pure GGA functionals BLYP and BP86 predict different stability orders. The computed average EPR g‐tensor, gav, of 2.03, at the B3LYP level, is in good agreement with the experimental findings. Heisenberg exchange coupling constants, J, were calculated within the broken‐symmetry formalism, at the B3LYP level, showing that the two iron centers are antiferromagnetic coupling, with a very weak coupling constant of about ?7 cm?1, in good agreement with the experimental value. Additionally, the effect of using different multiplicities of the reference geometries on the computed J value is discussed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
The main‐group 6p elements did not receive much attention in the development of recent density functionals. In many cases it is still difficult to choose among the modern ones a relevant functional for various applications. Here, we illustrate the case of astatine species (At, Z = 85) and we report the first, and quite complete, benchmark study on several properties concerning such species. Insights on geometries, transition energies and thermodynamic properties of a set of 19 astatine species, for which reference experimental or theoretical data has been reported, are obtained with relativistic (two‐component) density functional theory calculations. An extensive set of widely used functionals is employed. The hybrid meta‐generalized gradient approximation (meta‐GGA) PW6B95 functional is overall the best choice. It is worth noting that the range‐separated HSE06 functional as well as the old and very popular B3LYP and PBE0 hybrid‐GGAs appear to perform quite well too. Moreover, we found that astatine chemistry in solution can accurately be predicted using implicit solvent models, provided that specific parameters are used to build At cavities. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Density functional theory (DFT) is the only quantum‐chemical avenue for calculating thermochemical/kinetic properties of large polycyclic aromatic hydrocarbons (PAHs) such as graphene nanoflakes. Using CCSD(T)/CBS PAH isomerization energies, we find that all generalized gradient approximation (GGA) and meta GGA DFT functionals have severe difficulties in describing isomerization energies in PAHs. The poor performance of these functionals is demonstrated by the following root‐mean‐square deviations (RMSDs) obtained for a database of C14H10 and C18H12 isomerization energies. The RMSDs for the GGAs range between 6.0 (BP86‐D3) and 23.0 (SOGGA11) and for the meta GGAs they range between 3.5 (MN12‐L) and 11.9 (τ‐HCTH) kJ mol−1. These functionals (including the dispersion‐corrected methods) systematically and significantly underestimate the isomerization energies. A consequence of this behavior is that they all predict that chrysene (rather than triphenylene) is the most stable C18H12 isomer. A general improvement in performance is observed along the rungs of Jacob's Ladder; however, only a handful of functionals from rung four give good performance for PAH isomerization energies. These include functionals with high percentages (40–50%) of exact Hartree–Fock exchange such as the hybrid GGA SOGGA11‐X (RMSD = 1.7 kJ mol−1) and the hybrid‐meta GGA BMK (RMSD = 1.3 kJ mol−1). Alternatively, the inclusion of lower percentages (20–30%) of exact exchange in conjunction with an empirical dispersion correction results in good performance. For example, the hybrid GGA PBE0‐D3 attains an RMSD of 1.5 kJ mol−1, and the hybrid‐meta GGAs PW6B95‐D3 and B1B95‐D3 result in RMSDs below 1 kJ mol−1. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The theoretical determination of electric response properties of the biological systems is a field where the application of density functional theory (DFT) appears to be quite promising. In this work, the performance of 41 density functional methods is evaluated in predicting dynamic polarizabilities of an experimental benchmark set of 20 proteinogenic amino acids. The behavior of a large number of density functionals, including various types of the local spin density approximation (LSDA), generalized gradient approximation (GGA), meta‐GGA (m‐GGA), hybrid‐GGA (h‐GGA), hybrid meta‐GGA (hm‐GGA), and range‐separated hybrid‐GGA (rsh‐GGA), has been assessed for the purpose. Analyzing the results of our DFT benchmarking, we found that these computationally economical methods show very diverse predictive capability and a careful selection of DFT functionals is very important in the polarizability calculations. Considering the role of exchange, correlation, dispersion and long‐range corrections, it turned out that in the LSDA class, SVWN3 gives better results than SPL and SVWN5 toward the reference values. Of the GGA methods, OPBE outperforms all other functionals. The M06‐L is the best method of m‐GGA class. The B3LYP and TPSSh are the best functionals of h‐GGA and hm‐GGA lineages, respectively. Finally, CAM‐B3LYP is the best method of rsh‐GGA functionals that predicts the most accurate polarizability for amino acids by a large margin with respect to others. Overall, the best performing functionals turn out to be hm‐GGAs TPSSh, TPSS1KCIS, M05, tau‐HCTHhyb, and h‐GGA B3LYP. Hopefully, the results of this investigation might provide the useful guidance to propose a new exchange‐correlation functional for calculating the optical properties of biomolecular materials. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
6.
The performance of six different density functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in describing the infrared spectrum of forsterite, a crystalline periodic system with orthorhombic unit cell (28 atoms in the primitive cell, Pbmn space group), is investigated by using the periodic ab initio CRYSTAL09 code and an all‐electron Gaussian‐type basis set. The transverse optical (TO) branches of the 35 IR active modes are evaluated at the equilibrium geometry together with the oscillator strengths and the high‐frequency dielectric tensor ?. These quantities are essential to compute the dielectric function ?(ν), and then the reflectance spectrum R(ν), which is compared with experiment. It turns out that hybrid functionals perform better than LDA and GGA, in general; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is better than PBE; that LDA is the worst performing functional among the six under study. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

7.
A benchmark study on all possible density functional theory (DFT) methods in Gaussian09 is done to locate functionals that agree well with CCSD/aug‐cc‐pVTZ geometry and Ave‐CCSD(T)/(Q‐T) interaction energy (Eint) for small non‐covalently interacting molecular dimers in “dispersion‐dominated” (class 1), “dipole‐induced dipole” (class 2), and “dipole‐dipole” (class 3) classes. A DFT method is recommended acceptable if the geometry showed close agreement to CCSD result (RMSD < 0.045) and Eint was within 80–120% accuracy. Among 382 tested functionals, 1–46% gave good geometry, 13–44% gave good Eint, while 1–33% satisfied geometry and energy criteria. Further screening to locate the best performing functionals for all the three classes was made by counting the acceptable values of energy and geometry given by each functionals. The meta‐generalized gradient approximation (GGA) functional M06L was the best performer with total 14 hits; seven acceptable energies and seven acceptable geometries. This was the only functional “recommended” for at least two dimers in each class. The functionals M05, B2PLYPD, B971, mPW2PLYPD, PBEB95, and CAM‐B3LYP gave 11 hits while PBEhB95, PW91B95, Wb97x, BRxVP86, BRxP86, HSE2PBE, HSEh1PBE, PBE1PBE, PBEh1PBE, and PW91TPSS gave 10 hits. Among these, M05, B971, mPW2PLYPD, Wb97x, and PW91TPSS were among the “recommended” list of at least one dimer from each class. Long‐range correction (LC) of Hirao and coworkers to exchange‐correlation functionals showed massive improvement in geometry and Eint. The best performing LC‐functionals were LC‐G96KCIS and LC‐PKZBPKZB. Our results predict that M06L is the most trustworthy DFT method in Gaussian09 to study small non‐covalently interacting systems. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Circularly polarized luminescence (CPL), the differential emission of left‐ and right‐handed circularly polarized light from a molecule, is modeled by using time‐dependent density functional theory. Calculations of the CPL spectra for the first electronic excited states of d‐camphorquinone and (S,S)‐trans‐β‐hydrindanone under the Franck–Condon approximation and using various functionals are presented, as well as calculations of absorption, emission, and circular dichroism spectra. The functionals B3LYP, BHLYP, and CAM‐B3LYP are employed, along with the TZVP and aug‐cc‐pVDZ Gaussian‐type basis sets. For the lowest‐energy transitions, all functionals and basis sets perform comparably, with the long‐range‐corrected CAM‐B3LYP better reproducing the excitation energy of camphorquinone but leading to a blue shift with respect to experiment for hydrindanone. The vibrationally resolved spectra of camphorquinone are very well reproduced in terms of peak location, widths, shapes, and intensities. The spectra of hydrindanone are well reproduced in terms of overall envelope shape and width, as well as the lack of prominent vibrational structure in the emission and CPL spectra. Overall the simulated spectra compare well with experiment, and reproduce the band shapes, emission red shifts, and presence or absence of visible vibrational fine structure.  相似文献   

11.
Seven free base porphyrins employed in dye-sensitized photoelectrosynthetic cells are investigated with the aim of benchmarking the ability of different density functional theory (DFT) and time-dependent DFT approaches in reproducing their structure, vertical, and E0-0 excitation energies and the energy levels alignment (red-ox properties) at the interface with the TiO2. We find that both vertical and E0-0 excitation energies are accurately reproduced by range-separated functionals, among which the ω B97X-D delivers the lowest absolute deviations from experiments. When the dye/TiO2 interface is modeled, the physical interfacial energetics is only obtained when the B3LYP functional is employed; on the other hand, M06-2X (54% of exchange) and the two long-range corrected approaches tested (CAM-B3LYP and ω B97X-D) excessively destabilize the semiconductor conduction band levels with respect to the dye's lowest unoccupied molecular orbitals (LUMOs), predicting no pathway for electron injection. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
We present a database of 21 bond dissociation energies for breaking metal-ligand bonds. The molecules in the metal-ligand bond energy database are AgH, CoH, CoO+, CoOH+, CrCH3+, CuOH2+, FeH, Fe(CO)5, FeO, FeS, LiCl, LiO, MgO, MnCH3NiCH2+, Ni(CO)4, RhC, VCO+, VO, and VS. We have also created databases of metal-ligand bond lengths and atomic ionization potentials. The molecules used for bond lengths are AgH, BeO, CoH, CoO+, FeH, FeO, FeS, LiCl, LiO, MgO, RhC, VO, and VS and the ionization potentials are for the following atoms: C, Co, Cr, Cu, Ni, O, and V. The data were chosen based on their diversity and expected reliability, and they are used along with three previously developed databases (transition metal dimer bond energies and bond lengths and main-group molecular atomization energies) for assessing the accuracy of several kinds of density functionals. In particular, we report tests for 42 previously defined functionals: 2 local spin density approximation (LSDA) functionals, 14 generalized gradient approximation (GGA) methods, 13 hybrid GGA methods, 7 meta GGA methods, and 8 hybrid meta GGA methods. In addition to these functionals, we also examine the effectiveness of scaling the correlation energy by testing 13 functionals with scaled or no gradient-corrected correlation energy, and we find that functionals of this kind are more accurate for metal-metal and metal-ligand bonds than any of the functionals already in the literature. We also present a readjusted GGA and a hybrid GGA with parameters adjusted for metals. When we consider these 57 functionals for metal-ligand and metal-metal bond energies simultaneously with main-group atomization energies, atomic ionization potentials, and bond lengths we find that the most accurate functional is G96LYP, followed closely by MPWLYP1M (new in this article), XLYP, BLYP, and MOHLYP (also new in this article). Four of these five functionals have no Hartree-Fock exchange, and the other has only 5%. As a byproduct of this work we introduce a convenient diagnostic, called the B1 diagnostic, for ascertaining the multireference character in a bond.  相似文献   

13.
Yilei Wang  Guoshi Wu   《Acta Physico》2007,23(12):1831-1838
A scheme of time-dependent density functional theory (TDDFT) combined with single-excitation configuration interaction (CIS) approach was employed to make a detailed investigation of the emitting energy for fifteen well-known coumarin derivatives. The results showed that the predicted emitting energies as well as the absorption ones were dominated mainly by the exchange-correlation (XC) functional to be used. So long as a functional is properly chosen, the experimental emitting energy of most derivatives can be accurately reproduced within 0.16 eV by a calculation at the TDDFT/6-31G(d)//CIS/3-21G(d) theoretical level. It was found that, nevertheless, the hybrid functional, B3LYP, well predicted the absorption energies for all the fifteen coumarin derivatives but none of the functionals could work equally well for the emitting energy calculations. Two pure functionals, OLYP and BLYP, yield good emitting energies for the 7-aminocoumarins or derivatives with a N atom connected to 7-position, which exhibit inconspicuous charge transfer (CT) in their excited states, whereas the B3LYP hybrid functional, with 20% Hartree-Fock (HF) exchange energy, performs significantly better than OLYP and BLYP for those 3-substituted coumarins with larger CT in excited states. Thus, in comparison with the absorption energies, the selection of proper functionals for the emitting energy calculations becomes more complex. In all probability, it is effective and doable to choose an XC-functional with alterable fraction of HF exchange energy according to the composition and structure characteristics of molecule.  相似文献   

14.
Eleven exchange‐correlational functionals of different types corrected for dispersion by Grimme's D3 correction in conjunction with the aug‐cc‐pVTZ basis set were tested on the following noble gas (Ng) dimers: Ne2, Ar2, Kr2, Xe2, and Rn2. For comparison, the D2 and D3BJ corrections were probed with the B3LYP functional. From post‐HF wavefunction methods, CCSD(T) theory was also included. The investigated properties involved potential energy curves, equilibrium bond distances, and interaction energies. The B3LYP‐D3, B3LYP‐D3BJ, and PBE0‐D3 functionals performed overall best for bond distances, while B3LYP‐D3 and B97‐D3 performed best for interaction energies. The importance of fortunate error cancellations was seen in the often reduced agreement with reference data upon correction for BSSE. As several functionals performed well selectively for some noble gases (and poorly for others), we also analysed the performance on the Ng2 dimers individually and recommended DFT‐D3 functionals for the calculation of large clusters of each Ng.  相似文献   

15.
The hydrogen‐bond energies of water dimer and water‐formaldehyde complexes have been studied using density functional theory (DFT). Basis sets up to aug‐cc‐pVXZ (X=D, T, Q) were used. It was found that counterpoise corrected binding energies using the aug‐cc‐pVDZ basis set are very close to those predicted with the aug‐cc‐pVQZ set. Comparative studies using various DFT functionals on these two systems show that results from B3LYP, mPW1PW91 and PW91PW91 functionals are in better agreements with those predicted using high‐level ab initio methods. These functionals were applied to the study of hydrogen bonding between guanine (G) and cytosine (C), and between adenine (A) and thy mine (T) base pairs. With the aug‐cc‐pVDZ basis set, the predicted binding energies of base pairs are in good agreement with the most elaborate ab initio results.  相似文献   

16.
A thorough energy benchmark study of various density functionals (DFs) is carried out with the new GMTKN30 database for general main group thermochemistry, kinetics and noncovalent interactions [Goerigk and Grimme, J. Chem. Theor. Comput., 2010, 6, 107; Goerigk and Grimme, J. Chem. Theor. Comput., 2011, 7, 291]. In total, 47 DFs are investigated: two LDAs, 14 GGAs, three meta-GGAs, 23 hybrids and five double-hybrids. Besides the double-hybrids, also other modern approaches, i.e., the M05 and M06 classes of functionals and range-separated hybrids, are tested. For almost all functionals, the new DFT-D3 correction is applied in order to consistently test the performance also for important noncovalent interactions; the parameters are taken from previous works or determined for the present study. Basis set and quadrature grid issues are also considered. The general aim of the study is to work out which functionals are generally well applicable and robust to describe the energies of molecules. In summary, we recommend on the GGA level the B97-D3 and revPBE-D3 functionals. The best meta-GGA is oTPSS-D3 although meta-GGAs represent in general no clear improvement compared to numerically simpler GGAs. Notably, the widely used B3LYP functional performs worse than the average of all tested hybrids and is also very sensitive to the application of dispersion corrections. We discourage its usage as a standard method without closer inspection of the results, as it still seems to be often done nowadays. Surprisingly, long-range corrected exchange functionals do in general not perform better than the corresponding standard hybrids. However, the ωB97X-D functional seems to be a promising method. The most robust hybrid is Zhao and Truhlar's PW6B95 functional in combination with DFT-D3. If higher accuracy is required, double-hybrids should be applied. The corresponding DSD-BLYP-D3 and PWPB95-D3 variants are the most accurate and robust functionals of the entire study. Additional calculations with MP2 and and its spin-scaled variants SCS-MP2, S2-MP2 and SOS-MP2 revealed that double-hybrids in general outperform those. Only SCS-MP2 can be recommended, particularly for reaction energies. We suggest its usage when a large self-interaction error is expected that prohibits usage of double-hybrids. Perdews' metaphoric picture of Jacob's Ladder for the classification of density functionals' performance could unbiasedly be confirmed with GMTKN30. We also show that there is no statistical correlation between a functional's accuracy for atomization energies and the performance for chemically more relevant reaction energies.  相似文献   

17.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

18.
Following up on an earlier preliminary communication (Kozuch and Martin, Phys. Chem. Chem. Phys. 2011, 13 , 20104), we report here in detail on an extensive search for the most accurate spin‐component‐scaled double hybrid functionals [of which conventional double hybrids (DHs) are a special case]. Such fifth‐rung functionals approach the performance of composite ab initio methods such as G3 theory at a fraction of their computational cost, and with analytical derivatives available. In this article, we provide a critical analysis of the variables and components that maximize the accuracy of DHs. These include the selection of the exchange and correlation functionals, the coefficients of each component [density functional theory (DFT), exact exchange, and perturbative correlation in both the same spin and opposite spin terms], and the addition of an adhoc dispersion correction; we have termed these parametrizations “DSD‐DFT” (Dispersion corrected, Spin‐component scaled, Double‐hybrid DFT). Somewhat surprisingly, the quality of DSD‐DFT is only mildly dependent on the underlying DFT exchange and correlation components, with even DSD‐LDA yielding respectable performance. Simple, nonempirical GGAs appear to work best, whereas meta‐GGAs offer no advantage (with the notable exception of B95c). The best correlation components appear to be, in that order, B95c, P86, and PBEc, while essentially any good GGA exchange yields nearly identical results. On further validation with a wider variety of thermochemical, weak interaction, kinetic, and spectroscopic benchmarks, we find that the best functionals are, roughly in that order, DSD‐PBEhB95, DSD‐PBEP86, DSD‐PBEPW91, and DSD‐PBEPBE. In addition, DSD‐PBEP86 and DSD‐PBEPBE can be used without source code modifications in a wider variety of electronic structure codes. Sample job decks for several commonly used such codes are supplied as electronic Supporting Information. Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号