首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and heat transfer are transformed into ordinary differential equations. Series solutions of the resulting problem are computed. The effects of various interested parameters, e.g., the couple stress parameter, the angle of inclination, the mixed convection parameter, the Prandtl number, the Reynolds number, the radiation parameter, and the variable thermal conductivity parameter, are illustrated. The skin friction coefficient and the local Nusselt number are computed and analyzed. It is observed that the heat transfer rate at the surface increases while the velocity and the shear stress decrease when the couple stress parameter and the Reynolds number increase. The temperature increases when the Reynolds number increases.  相似文献   

2.
The radiation effect on the mixed convection flow of an optically dense viscous fluid adjacent to an isothermal cone embedded in a saturated porous medium with Rosseland diffusion approximation is numerically investigated. The entire regime of the mixed convection is included, as the mixed convection parameter of χ varies from 0 (pure free convection) to 1 (pure forced convection). The transformed nonlinear system of equations is solved by using an implicit finite difference method. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter χ, the cone angle parameter m, the radiation-conduction parameter R d and the surface temperature parameter H. The local Nusselt number decreases initially, reaches a minimum in the intermediate value of χ and then increases gradually. It is apparent that increasing the cone angle parameter m enhances the local Nusselt number. The local Nusselt number is significantly increased for the large values of the radiation-conduction parameter R d and the surface temperature parameter H, i.e., radiation effect becomes pronounced. Received on 25 October 1999  相似文献   

3.
The present paper is concerned with the study of radiation effects on the combined (forced-free) convection flow of an optically dense viscous incompressible fluid over a vertical surface embedded in a fluid saturated porous medium of variable porosity with heat generation or absorption. The effects of radiation heat transfer from a porous wall on convection flow are very important in high temperature processes. The inclusion of radiation effects in the energy equation leads to a highly non-linear partial differential equations which are transformed to a system of ordinary differential equations using non-similarity transformation. These equations are then solved numerically using implicit finite-difference method subject to appropriate boundary and matching conditions. A parametric study of the physical parameters such as the particle diameter-based Reynolds number, the flow based Reynolds number, the Grashof number, the heat generation or absorption co-efficient and radiation parameter is conducted on temperature distribution. The effects of radiation and other physical parameters on the local skin friction and on local Nusselt number are shown graphically. It is interesting to observe that the momentum and thermal boundary layer thickness increases with the radiation and decrease with increase in the Prandtl number.  相似文献   

4.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

5.
A boundary layer analysis is performed to study the influence of thermal radiation and buoyancy force on two-dimensional magnetohydrodynamic flow of an incompressible viscous and electrically conducting fluid over a vertical stretching sheet embedded in a porous medium in the presence of inertia effect. The governing system of partial differential equations is first transformed into system of ordinary differential equations using self-similarity transformation. A special form for magnetic field is chosen to obtain the similarity solution. The transformed boundary layer equations are solved numerically for some important values of the physical parameters. The present results are compared with the previously published papers and the results are found to be in excellent agreement. The important features of the flow, heat and mass transfer characteristics for different values of thermal radiation, porous permeability, magnetic field and buoyancy parameters are analyzed and discussed. The effects of various physical parameters on the skin friction coefficient, local Nusselt number and local Sherwood number are also presented. It is found that increase in the value of thermal radiation parameter R 1 increases the skin friction coefficient and Sherwood number whereas reverse trend is seen for the local Nusselt number.  相似文献   

6.
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.  相似文献   

7.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

8.
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.  相似文献   

9.
An analysis is carried out to study the combined effects of viscous and Ohmic heating in the transient, free convective flow of a viscous, incompressible, and doubly stratified fluid past an isothermal vertical plate with radiation and chemical reactions. The governing boundary layer equations are solved numerically by an implicit finite difference scheme of the Crank-Nicolson type. The influence of different parameters on the velocity, the temperature, the concentration, the skin friction, the Nusselt number, and the Sherwood number is discussed with graphical illustrations. It is observed that an increase in either the thermal stratification or the mass stratification parameter decreases the velocity. An increase in the thermal stratification increases the concentration and decreases the temperature while an opposite effect is observed for an increase in the mass stratification. An augmentation in viscous and Ohmic heating increases the velocity and temperature while decreases the concentration. The results are found to be in good agreement with the existing solutions in literature.  相似文献   

10.
Anuar Ishak 《Meccanica》2010,45(3):367-373
In the present paper, we study the effects of radiation on the thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta-Fehlberg method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is found that the heat transfer rate at the surface decreases in the presence of radiation. Comparison with known results for certain particular cases is excellent.  相似文献   

11.
The effects of magnetic field and thermal radiation on a micropolar fluid flow near a stagnation point towards a moving surface are investigated. Numerical solutions for the transformed non-linear ordinary differential equations are obtained using the fourth order Rung-Kutta integration scheme coupled with the shooting method. The effects of the magnetic parameter, the material parameter, the radiation parameter and the Prandtl number on the velocity, angular velocity and temperature profiles are displayed graphically and investigated. Also the numerical values of the local skin-friction coefficient and the Nusselt number for various values of the physical parameters are entered in tabular form and discussed.  相似文献   

12.
The flow and heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching surface has been studied numerically under conditions of constant heat flux and thermal radiation and evaluated for the effect of wall slip. The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations which are using appropriate boundary conditions for various physical parameters. The remaining set of ordinary differential equations is solved numerically by fourth-order Runge–Kutta method using the shooting technique. The effects of the viscosity, the slip velocity, the radiation parameter, power-law index, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin friction and Nusselt numbers are presented. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

13.
The problem of the flow and heat transfer over an unsteady stretching sheet embedded in a porous medium in the presence of thermal radiation is studied theoretically and numerically. The continuity, momentum, and energy equations, which are coupled nonlinear partial differential equations, are reduced to a set of two nonlinear ordinary differential equations. Special attention is given to study the convergence of the proposed method. The error estimation is also given. The effects of various parameters, such as the Darcy parameter, the radiation parameter, and the Prandtl number, on the flow and temperature profiles, as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. The results obtained agree very well with the data obtained by the Runge-Kutta method coupled with the shooting technique.  相似文献   

14.
A mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface with slip and viscous dissipation effects is investigated. The governing partial differential equations for the third-grade fluid are converted into a system of nonlinear ordinary differential equations by using a similarity transformation. The effects of various parameters, including the Weissenberg number, third-grade parameter, local Reynolds number, Prandtl number, Eckert number, mixed convection parameter, velocity slip, and thermal slip on the velocity and temperature profiles, local skin friction coefficient, and local Nusselt number are discussed.  相似文献   

15.
A free convertion flow of an optically dense viscous incompressible fluid along a vertical thin circular cylinder has been studied with effect of radiation when the surface temperature is uniform. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations. Solutions of the governing equations are obtained employing the implicit finite difference methods together with Keller box scheme as well the local nonsimilarity method with second order truncation for all ξ (nondimensional transverse curvature parameter) in the interval [0,10] and are expressed in terms of local Nusselt number for a range of values of the pertinent parameters. Effects of pertinent parameters, such as, the radiation parameter, R d , the surface temperature parameter, θ w , taking Prandtl number, Pr, equals 0.7 on the velocity and temperature field are also presented graphically. From the solution it is seen that increase of R d , or θ w leads to increase in the local rate of heat transfer coefficients. Results obtained by both the methods are obtained in excellent agreement between each other upto ξ = 10.  相似文献   

16.
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.  相似文献   

17.
In this paper, the effects of viscous and Ohmic heating and heat generation/absorption on magnetohydrodynamic flow of an electrically conducting Casson thin film fluid over an unsteady horizontal stretching sheet in a non-Darcy porous medium are investigated. The fluid is assumed to slip along the boundary of the sheet. Similarity transformation is used to translate the governing partial differential equations into ordinary differential equations. A shooting technique in conjunction with the 4 th order Runge-Kutta method is used to solve the transformed equations. Computations are carried out for velocity and temperature of the fluid thin film along with local skin friction coefficient and local Nusselt number for a range of values of pertinent flow parameters. It is observed that the Casson parameter has the ability to enhance free surface velocity and film thickness, whereas the Forchheimer parameter, which is responsible for the inertial drag has an adverse effect on the fluid velocity inside the film. The velocity slip along the boundary tends to decrease the fluid velocity. This investigation has various applications in engineering and in practical problems such as very large scale integration(VLSI) of electronic chips and film coating.  相似文献   

18.
A boundary layer analysis is used to investigate the heat and mass transfer characteristics of mixed convection about a vertical flat plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion. The plate is maintained at prescribed surface temperature/concentration (PST/PSC) or prescribed heat/mass flux (PHF/PMF). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results for the local heat transfer rate and the local mass transfer rate are presented for various parameters. The local heat and mass transfer rates increase with increasing n and m and buoyancy parameter ξ. When buoyancy parameter ξ is very small (large) the value of local Nusselt and the local Sherwood number correspond with the pure forced (free) convection, respectively. Increasing buoyancy ratio N (or N *) increases the local heat and mass transfer rates. It is apparent that Lewis number has a pronounced effect on the local mass transfer rate than it does on the local heat transfer rate. Furthermore, increasing Lewis number decreases (increases) the local heat (mass) transfer rate. Received on 8 December 1997  相似文献   

19.
The effects of non-uniform heat generation/absorption and viscous dissipation on heat transfer of a non-Newtonian power-law fluid on a non-linearly stretching surface have been examined. The governing nonlinear partial differential equations describing the problem are transformed to a system of non-linear ordinary differential equations by using suitable similarity transformation. The transformed system of ordinary differential equations is solved numerically using fourth order Runge-Kutta method with the shooting technique. Graphical solutions for the dimensionless temperature are presented and discussed for various values of the power-law index parameter, the Prandtl number, the heat generation/absorption parameter and the Eckert number. The results show that the local Nusselt number is reduced with increasing the Eckert number or the heat generation parameter, whereas the heat absorption parameter has the effect of enhancing the local Nusselt number.  相似文献   

20.
The paper investigates the effect of radiation on Darcy's buoyancy induced flow of an optically dense viscous incompressible fluid along a heated inclined flat surface maintained at uniform temperature placed in a saturated porous medium with Rosseland diffusion approximation employing the implicit finite difference method together with Keller box elimination technique. Both the streamwise and normal components of the buoyancy force are retained in the momentum equations. The numerical results show that as the buoyancy parameter, ξ, increases the local Nusselt number increases. The results for the locally nonsimilar solutions are compared with the locally similar solutions for small angle of inclination and approximate similar solutions along vertical surface. The effect of the conduction-radiation parameter, R d , and the surface temperature excess ration, θ w , on the local Nusselt number, the tangential velocity distribution and the temperature distribution are also shown graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号