首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Type II ceramides were separated according to the length of their fatty acid alkyl chain using two column system. The packing of the first column was non-polar adsorbent prepared by coating of macroporous spherical silica with cationized poly(vinyl alcohol) of low substitution degree. Commercial normal phase column Lichrosorb Si 60 was used as a second column in this system. Elution was performed in an isocratic mode using methanol:chloroform 50:50 (v/v) as an eluent.  相似文献   

2.
The adsorption of Triton X-100 in aqueous solution on the granite sand has been investigated to evaluate its ability as an adsorbent. Various parameters such as agitation time, adsorbent dose, adsorbent size, initial concentration of adsorbate, pH, temperature, and effect of interference ions were studied on the laboratory scale to establish optimum conditions for the removal of TX-100 from the effluents of different industries. Isotherm data were analyzed for possible agreement with the Langmuir and Frendlich adsorption isotherm equations. The first order rate equation by Lagergren was tested on the kinetic data. The rate of adsorption was conformed a pseudo first order kinetics with good correlation coefficient. The value of activation energy of sorption (Ea) was obtained as 44.6 kJ mol?1. Results showed that granite sand exhibit reasonably good surfactant removals for nonionic types. The possible role of the adsorbent in a chromatographic column was also worked out.  相似文献   

3.

Type II ceramides were separated according to the length of their fatty acid alkyl chain using two column system. The packing of the first column was non-polar adsorbent prepared by coating of macroporous spherical silica with cationized poly(vinyl alcohol) of low substitution degree. Commercial normal phase column Lichrosorb Si 60 was used as a second column in this system. Elution was performed in an isocratic mode using methanol:chloroform 50:50 (v/v) as an eluent.

  相似文献   

4.
The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L?1 HCl–3% thiourea solution at a flow rate of 2.0 mL min?1. The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g?1 for Pd(II).The detection limit (3σ) of the method was 0.29 ng mL?1, and the relative standard deviation (RSD) was 3.1% (n = 11). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.  相似文献   

5.
Baytak S  Türker AR 《Talanta》2005,65(4):938-945
A microorganism Agrobacterium tumefacients as an immobilized cell on a solid support was presented as a new biosorbent for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to flame atomic absorption spectrometric analysis. Amberlite XAD-4 was used as a support material for column preconcentration. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of sample solution, volume of sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions were about 6, 8, 8 and 6, respectively. The loading capacity of adsorbent for Co(II) and Mn(II) were found to be 29 and 22 μmol g−1, respectively. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III), under the optimum conditions were found to be 99 ± 3, 99 ± 2, 98 ± 3 and 98 ± 3%, respectively, at the 95% confidence level. The limit of detection was 3.6, 3.0, 2.8 and 3.6 ng ml−1 for Fe(III), Co(II), Mn(II) and Cr (III), respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied for metal ion determination from water samples, alloy samples, infant foods and certified samples such as whey powder (IAEA-155) and aluminum alloy (NBS SRM 85b). The analytes were determined with a relative error lower than 10% in all samples.  相似文献   

6.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   

7.
刘西茜 《应用化学》2009,26(7):872-874
摘要:建立茵陈中滨蒿内酯的溶剂浮选分离富集方法。方法 考察了浮选溶剂、氮气流速、试液 pH、浮选时间及电解质 NaCl 等因素对浮选效果的影响,优选出最佳浮选条件,并由高效液相色谱测定其含量。结果 对最佳条件下的浮选效果进行了评价。结论 加标回收率92.31 ~ 99.97 %; RSD = 3.20 %.溶剂浮选分离富集方法可行。  相似文献   

8.
In the present work the adsorption of aromatic compound, namely ??-naphthol (BN) by two granular activated carbons, one untreated and the other treated with HNO3 carried out under controlled conditions. The effects of experimental parameters on adsorption process such as pH, contact time and adsorbent dosage have been investigated. Experimental design methodology was applied to optimize the removal of ??-naphthol. The effect of various experimental parameters was investigated using five-level three-factorial central composite design (CCD). The relationship between the parameters and the response for model optimization was found and optimum conditions were obtained by CCD. In the optimum conditions obtained by response surface modeling, 100% BN was adsorbed on the carbons. Treatment with HNO3 led to a decrease in the point of zero charge and the adsorption capacity (Q max) of the activated carbon. The adsorption capacity of the carbons was determined using Freundlich and Langmuir homogenous equation. The variation of the model parameters with the solution pH was also studied. The fitted parameters obtained from both models showed the Q max value decrease with increasing of pH.  相似文献   

9.
To establish optimum operating conditions for high-speed gel-permeation chromatography (GPC), the effects of column packing particle size, solvent flow rate, and column length on the separation efficiency have been investigated by using monodisperse polystyrene samples and polystyrene gel columns (TSK-GEL column, Type-H). Decreasing the particle size of the column packing reduces the time required to obtain a given resolution. Monodisperse polystyrene standards were measured under the optimum operating conditions established (gel particle size 5 μ, column length 2 ft, flow rate 2.5 ml/min). The molecular weight distribution of a polymer mixture was determined in less than 10 min with the same accuracy as by the conventional GPC. Such short analysis time enables one to use GPC for in-plant quality control.  相似文献   

10.
A Cd(II)-imprinted thiocyanato-functionalized silica gel adsorbent with high adsorption capacity was prepared by surface imprinting technique combined with sol–gel process for the selective adsorption of Cd(II) ion in aqueous solution, and was characterized by Fourier-transform infrared spectroscopy, nitrogen gas sorption and thermogravimetric analysis. The influences of different conditions (such as the pH of solutions, the contact time and the initial concentrations of Cd(II) ions) on the adsorption capacity of Cd(II) were investigated. The optimum pH of adsorption was in the range of 4–8.5. The adsorption equilibrium could be reached in 20 min. The relatively selectivity coefficients of the imprinted silica were higher than those of the non-imprinted adsorbents. Ho’s pseudo-second-order model well described the kinetics of the adsorption reaction. The adsorption process of metals followed Redlich–Peterson isotherm model, and the experimental value of maximum adsorption capacity for Cd(II) was 72.8 mg·g?1. The positive value of ΔH o suggested endothermic nature of Cd(II) adsorption on the imprinted silica adsorbent. Increase in entropy of adsorption reaction was shown by the positive value of ΔS o and the negative value of ΔG o indicating that the adsorption was spontaneous in nature.  相似文献   

11.
A sensitive and simple solid‐phase preconcentration procedure for the determination of trace amount of lead by flame atomic absorption spectrometry (FAAS) is developed. The method is based on the adsorption of Pb2+ on the column of fine grinded eucalyptus stem adsorbent, elution of the column by nitric acid and subsequent determination by FAAS. The effect of different variables such as pH, eluent type, flow rate and interfering ions on the recovery of the analyte was investigated and optimum conditions were established. The adsorption of lead onto fine grinded eucalyptus stem can formally be described by a Langmuir equation with a maximum adsorption capacity of 4.49 mg g?1. A preconcentration factor of 50 was achieved using the optimum conditions. The calibration graph was linear in the range 10–125 ng mL?1 of lead in the initial solution with r = 0.9982. The limit of detection based on 3Sb criterion was 4.5 ng mL?1 and the relative standard deviation for eight replicate measurements of 30 and 80 ng mL?1 of iron was 3.6 and 2.8%, respectively. The method was successfully applied to the determination of lead added to well, tap and wastewater samples.  相似文献   

12.
A procedure for preconcentration of Mn(Ⅱ), Fe(Ⅱ), Co(H), Cu(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ) based on retention of their complexes with 8-hydroxyquinoline (HQ) on Amberlite XAD-2000 resin in a column was proposed for the analysis of environmental samples by flame AAS. Various parameters such as pH, eluent type, volume, concentration, flow rate and volume of sample solution, and matrix interference effect on the retention of the metal ions were investigated. The optimum pHs for the retention of metal complexes in question were about 6 except for Mn^2+ for whose value is 8. The loading capacity of the adsorbent for these metals and their recoveries from the resin under the optimum conditions were in the range 6.82-9.26 mg·g^-1 and 95%-101%, respectively. The enrichment factor was calculated as 100 and the limit of detection was in the range 0.3-2.2 μg·L^-1 (n=20, blank+ 3s). The proposed enrichment method was applied to tap water, stream water and vegetable samples. The validation of the procedure was carried out by analysis of certified reference material and standard addition. The analytes were determined with a relative standard deviation lower than 6% in all samples.  相似文献   

13.
Synthesis of chitosan–ZnO nanoparticles (CS–ZnONPs) composite beads was performed by a polymer-based method. The resulting bionanocomposite was characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) spectroscopy and infrared spectroscopy (FT-IR). Adsorption applications for removal of pesticide pollutants were conducted. The optimum conditions, including adsorbent dose, agitating time, initial concentration of pesticide and pH on the adsorption of pesticide by chitosan loaded with zinc oxide nanoparticles beads were investigated. Results showed that 0.5 g of the bionanocomposite, in room temperature and pH 7, could remove 99% of the pesticide from permethrin solution (25 ml, 0.1 mg L−1), using UV spectrophotometer at 272 nm. Then, the application of the adsorbent for pesticide removal was studied in the on-line column. The column was regenerated with NaOH solution (0.1 M) completely, and then reused for adsorption application. The CS–ZnONPs composite beads appear to be the new promising material in water treatment application with 56% regeneration after 3 cycles.  相似文献   

14.
A cost-effective adsorbent was prepared by carbonization of pre-treated Phragmites australis reed at 500 °C. Phragmites australis was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) surface analyses. XRD of the as-prepared adsorbent exhibited a partially crystalline structure with a specific surface area of 211.6 m2/g and an average pore diameter of 4.2 nm. The biosorption potential of novel biosorbent Phragmites australis reed was investigated with a batch scale and continuous flow study. The study was conducted at different constraints to obtain optimum pH conditions, adsorbent dose, contact time, agitation speed, and initial TDS concentration. In order to analyze the properties of the procedure and determine the amount of sodium removal, Langmuir, Freundlich, and Dubinin–Radushkevich isotherms were tested. The optimal values of contact time, pH, and adsorbent dose were found to be 150 min, 4, and 10 g/L, respectively, with an agitation speed of 300 rpm at room temperature (27 °C). The three tested isotherms show that the adsorption of Na+ onto the prepared adsorbent is a hybrid process from physi- and chemisorption. For industrial application, the adsorbent was tested using the adsorbent column technique. Pseudo-first-order, pseudo-second-order, and diffusion models were connected, and it was discovered that the information fit best to the pseudo-second-arrange active model. According to the intraparticle diffusion model, the mechanism goes through four stages before reaching equilibrium. The periodicity test shows that the adsorption ability of Phragmites australis can be recovered by washing with 0.1 M HCl.  相似文献   

15.
Andac M  Asan A  Bekdemir Y  Kutuk H  Isildak I 《Talanta》2003,60(1):191-197
A new, simple and rapid spectrophotometric FI method for the accurate and precise determination of Hg(II) in pharmaceutical preparations has been developed. The method is based on the measuring the decrease of absorbance intensity of p-nitrobenzoxosulfamate (NBS) due to the complexation with Hg(II). The absorption peak of the NBS, which is decreased linearly by addition of Hg(II), occurs at 430 nm in 2×10−4 mol l−1 HNO3 as a carrier solution. Optimization of chemical and FI variables has been made. A micro column consisting of several packing materials applied instead of reaction coil was also investigated. A background level of Fe(III) maintained in reagent carrier solution with NBS was found useful for sensitivity and selectivity. Under the optimized conditions, the sampling rate was over 100 h−1, the calibration curve obtained were linear over the range 1-10 μg ml−1, the detection limit was lower than 0.2 μg ml−1 for a 20 μl injection volume, and the precision [Sr=1% at 2 μg ml−1 Hg(II) (n=10)] was found quite satisfactory. Application of the method to the analysis of Hg(II) in pharmaceutical preparations resulted a good agreement between the expected and found values.  相似文献   

16.
To separate minor actinides from high level liquid waste (HLLW) of PUREX reprocessing, a silica-based macroporous isobutyl-BTP/SiO2-P adsorbent was synthesized by impregnating isobutyl-BTP (2,6-di(5,6-diisobutyl-1,2,4-triazin-3-yl)pyridine) extractant into the macroporous SiO2-P support with a mean diameter of 60 μm. A partitioning process using extraction chromatography for the treatment of HLLW was designed consisting five separation columns. As a partly work focused on isobutyl-BTP/SiO2-P separation column, adsorption behavior of 241Am and trivalent rare earth (RE) from simulated HLLW onto silica-based isobutyl-BTP/SiO2-P adsorbent was investigated by batch method. Meanwhile, the chemical and radiolytic stabilities of isobutyl-BTP/SiO2-P adsorbent against 0.01 M HNO3 solution and γ-ray irradiation were studied. It was found that isobutyl-BTP/SiO2-P adsorbent exhibited good adsorption selectivity for 241Am over RE(III) in 0.01 M HNO3 solution and showed weak or no adsorption affinity to light and middle RE(III) groups. In addition, in stability experiments, isobutyl-BTP adsorbent showed excellent stability against 0.01 M HNO3 solution and γ-ray irradiation over 4 months contact time.  相似文献   

17.
In this work, uranium adsorption from aqueous (waste) solution onto thermal and chemical modified bentonite (TCMB) has been studied. The relevant factors affecting uranium adsorption onto our TCMB adsorbent were studied. These factors involved contact time, initial uranium concentrations, pH, adsorption temperature, foreign ion and the effect adsorbent (TCMB) amount using synthetic solution. The theoretical capacity of TCMB adsorbent is about 29 mg/g TCMB. The optimum adsorption conditions were choiced. Uranium elution from the loaded TCMB adsorbent has been carried out using CH3COONa as an effective eluent. Uranium adsorption from Gattar liquid waste by TCMB adsorbent was carried out in columns. The low uranium adsorption efficiency (37.5 % of the theoretical capacity of TCMB) may be due to the adsorption competition between uranium and difference foreign ion present in the solution (as iron). More than 92 % of the loaded uranium amount on the TCMB adsorbent has been eluted using CH3COONa as an efficient eluent.  相似文献   

18.
A sensitive and selective preconcentration method has been developed for mercury using naphthalene-methyltrioctylammonium chloride (Aliquat 336s) as an adsorbent. Mercury as HgI42− was retained by the adsorbent in the column at a flow rate of 1 ml min−1. The column was washed by a solution of sodium tetraphenylborate and sodium iodide to elute the adsorbed mercury. The eluents were collected in a 10 ml volumetric flask and diluted to the mark with water, transferred to a voltammetric cell and anodic stripping-differential pulse voltammetry was performed. Preconcentration factors of 40 and 80 could be achieved when using a 10 and 5 ml voltammetric cell, respectively. The calibration graph was linear in the range of 1.2-8.7 ng ml−1 Hg(II) in the initial solution with r=0.9998 (n=6) and the 3 s detection limit was 0.13 ng ml−1 when using a 10 ml cell. The relative standard deviation for eight replicate measurements of 1.2, 5.0 and 8.7 ng ml−1 of Hg(II) in the initial solution was 0.51, 0.71 and 0.80%, respectively. The proposed method was successfully applied to determination of mercury in natural waters, wastewater and synthetic samples.  相似文献   

19.
Authors have constructed an automatized four-column large laboratory scale (I.D. = 50 mm, L = 500 mm) simulated moving bed (SMB) equipment. The applied model system for separation of biomolecules is glycine, L-phenylalanine, water and Sepabeads SP825 adsorbent. The authors determined the adsorption equilibrium data and the packing characteristics. The operating conditions of SMB equipment were calculated with the help of the Morbidelli variables. During the SMB experiments, glycine and L-phenylalanine were separated in water on Sepabeads SP825 with an average particle size 0.3 mm at temperatures 20 degrees C and 60 degrees C. The measurement series were carried out on a four-column three-zone open loop SMB. Both L-phenylalanine and glycine were produced with more than 99.9% (m/m) purity and 99% yield at productivity 1.7-3.7, with productivity 3.7-8.1 mg/(g adsorbent h) in case of 2-1-1-0 column configuration. The measured and the calculated data agreed well.  相似文献   

20.
An on-line column preconcentration method based on the combined use of ammonium O,O-diethyldithiophosphate and activated carbon or polyurethane foam as adsorbents has been developed for the determination of Pb in water samples. The complexed Pb was eluted with ethanol and determined by flame atomic absorption spectrometry. The optimum preconcentration conditions are given for each adsorbent. The enrichment factors were 63 and 294, and the detection limits (3σ) 3?μg?L–1 and 0.8?μg?L–1, respectively, for the carbon and foam systems. When the optimized procedures were applied to the determination of Pb in water samples the recovery efficiency was > 96%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号