首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

2.
A sensitive spectrophotometric method has been developed for the determination of uranium. The uranium(IV)-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 1.5–3.0 M hydrochloric acid solution. Maximal absorbance occurs at 673 nm and Beer's law is obeyed over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.1·104 1 mole?1 cm?1. Uranium can be determined in the presence of fluoride. sulfate and phosphate. Nitrate ion and elements (chromium, copper, iron) which affect the reduction of uranium(VI) or stability of uranium(IV) interfere.  相似文献   

3.
Benzoylthiourea derivatives (N,N-diphenyl-N′-(3-methylbenzoyl)thiourea and diphenyl-N′-(4-methylbenzoyl)thiourea) were impregnated onto silica gel. The preconcentration of uranium(VI) from aqueous solution was investigated. Extraction conditions were optimized in batch method prior to determination by uv–visible absorption spectrometry using arsenazo(III). The optimum pH for quantitative adsorption was found as 3–7. Quantitative recovery of uranium (VI) was achieved by stripping with 0.1 mol L?1 HCl. Equilibration time was determined as 30 min for 99% sorption of U(VI). Under optimal conditions, dynamic linear range of for U(VI) was found as 0.25–10 μg mL?1. The relative standard deviation as percentage and detection limit were 5.0% (n = 10) for 10 μg mL?1 U(VI) solution and 8.7 ng mL?1, respectively. The method was employed to the preconcentration of U(VI) ions in soil and tap water samples.  相似文献   

4.
Solvent extractions of thorium(IV) and uranium(VI) by a commercially available chelating extractant LIX-26 (an alkylated 8-hydroxyquinoline) or 8-hydroxyquinoline, benzoic or salicylic acid, dipentyl sulphoxide (DPSO) and their mixtures with butanol as modifier in benzene/methylisobutyl ketone (MIBK) as the diluent have been studied. Extraction of uranium(VI) by 10% LIX-26 and 10% butanol in benzene becomes quantitative at pH 5.0. The pH 0.5 values for the extraction of thorium(IV) and uranium(VI) are 4.95 and 3.35, respectively. Quantitative extraction of thorium(IV) by the mixture of 0.1 M oxine and 0.1 M salicylic acid in methylisobutyl ketone was observed at pH 5.0. The influence of concentration of various anions on the extraction of Th4+ by mixtures of LIX-26 and benzoic acid has been studied. Studies on extraction of thorium(IV) and uranium(VI) by mixtures of LIX-26 (HQ) and DPSO show that the extracted species are possibly of the type [ThQ2/DPSO/2/SCN/2] and [UO2Q2/DPSO/], respectively.  相似文献   

5.
The polarographic behavior of the titanium(IV)-N-benzoyl-N-phenyl-hydroxylamine (BPHA) system in acidic medium and in water-ethanol mixtures has been studied. In (1+3) water-ethanol containing 2 M sulfuric acid and 0.05 M BPHA, titanium(IV) gives a single kinetically controlled wave. Titanium(IV) can be determined at concentrations as low as 5·10-6M, in the presence of Fe(III), Cu(II), V(V), etc., but Cd(II), Sn(II and IV), As(V), U(VI) and Mo(VI) interfere.  相似文献   

6.
Summary Determination of Uranium and Thorium in Phosphate Rocks by a Combined Ion-Exchange — Spectrophotometric Method A selective anion-exchange separation and Spectrophotometric method has been developed for the determination of uranium and thorium in phosphate rocks. About 0.2 g of rock sample is decomposed with nitric acid. Uranium and thorium are adsorbed by anion-exchange on an Amberlite CG 400 (NO3 ) column from the sample solution adjusted to 2.5M in magnesium nitrate and 0.1M in nitric acid. Uranium and thorium are eluted consecutively with 6.6M nitric acid and 0.1M nitric acid, respectively. Uranium and thorium in the respective effluents are determined spectrophotometrically with Arsenazo III. Results are quoted on uranium and thorium in NBS standard phosphate rock and others.  相似文献   

7.
A novel flow injection method has been developed for the indirect determination of uranium by the on-line reduction and subsequent fluorimetric detection of cerium(III). A sample solution containing uranium(VI), prepared as a sulfuric acid solution, was injected into a sulfuric acid carrier solution and passed through a column packed with metal bismuth to reduce uranium(VI) to uranium(IV). The sample solution was merged with a cerium(IV) solution to oxidize uranium(IV) to uranium(VI) and the cerium(III) generated was then monitored fluorimetricaly. The present method is free from interference from zirconium, lanthanides, and thorium, and has been successfully applied to the determination of uranium in monazite coupled with an anion-exchange separation in a sulfuric acid medium to eliminate iron(III). The sample throughput was 25 per hour and the lowest detectable concentration was 0.0042 mg l(-1).  相似文献   

8.
Summary Mg(OH)2 was identified as a component of Sorel’s cement being a very strong sorbent for uranium. Sorel’s cement is a mixture of MgO, MgCl2 and water. The optimal conditions for the adsorption of U(VI) was studied by the batch method. A contact time of 2 hours was found to be optimum. Maximum U(VI) uptake was observed in a pH range of 5.5-6.5 with a sorption constant of Kads = 0.9 h-1 at initial concentration of 20 ppm. Polypropylene columns filled with 2 g of Sorel’s cement at a mesh size of 35 were used for the preconcentration of uranium by passing 8 l of water containing 10 ppb U(VI). A flow rate of 0.25 ml/min and a bed height of 5 cm were found to be the optimum for the U(VI) separation. A 5 wt% triphenylphosphine oxide solution in toluene was used as an organic solvent for the separation of uranium from interfering elements such as iron(III) and thorium(IV), prior to spectrophotometric analysis. The determination of U(VI) was accomplished by adding Arsenazo III as a coloring reagent to the solution and using a UV-160A spectrophotometer.  相似文献   

9.
Karve MA  Khopkar SM 《Talanta》1993,40(6):913-917
A novel method is proposed for the solvent extraction of niobium(V). A 0.1M solution of Aliquat 336S in xylene quantitatively extracts microgram quantities of niobium(V) from 0.01M ascorbic acid at pH 3.5-6.5. Niobium from the organic phase is stripped with 0.5M nitric acid and determined spectrophotometrically in the aqueous phase as its complex with TAR. The method permits separation of niobium not only from tantalum(V) but also from vanadium(IV), titanium(IV), zirconium(IV), thorium(IV), chromium(III), molybdenum(VI), uranium(VI), iron(III), etc. Niobium from stainless steel was determined with a precision of 0.42%.  相似文献   

10.
A method is described for the extractive separation and spectrophotometric determination of uranium(VI) from an aqueous solution of pH 5.0–7.0 using benzoylacetone (bzac) and pyridine (py) dissolved in toluene as extractants. The extracted species are UO2(bzac(2·2py. The method provides separation of uranium(VI) from lanthanum(III), samarium(III), neodymium(III), cerium(III) and thorium(IV). The method is precise, accurate, fast and selective.  相似文献   

11.
The reduction of bromide solutions of various metals with the silver (walden) reductor is described. Iron(III) is quantitatively reduced to iron(II) in 0.1–4 M HBr; similarly, copper(II) is reduced to copper(I) in > 1.5 M HBr, and vanadium.(V) to vanadium(IV) and uranium(VI) to uranium(IV) in > 0.3 M HBr. Tin(IV) is only partly reduced to tin(II) below 6M HBr. Reduction of molybdenum(VI) to molybdenum(V) requires heating, whereas reduction of tungsten(VI) is never quantitative. Suitable conditions for the titrations are described.  相似文献   

12.
Sorbohydroxamic acid forms with uranium an orange red, water soluble complex. The mole ratio of uranyl ion to compound is 1 to 1 under the investigated conditions. The formation constant of this chelate was also determined by the Likussar—Boltz method at a constant ionic strength of 0.1 M at 30°C as 2.10×102. The recommended procedure obeys Beer's law between 3.98ppm and 166.6ppm of uranyl ion at pH 3.8±0.1. Tolerances to cerium (IV) and thorium have been investigated. The procedure for the determination of uranium are made more specific by applying preliminary extraction of uranium by ether.  相似文献   

13.
A simple and rapid spectrophotometric determination of thorium is described. The thorium-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 2.0–3.0 M hydrochloric acid solution. Maximum absorbance occurs at 620 and 670 nm and Beer's law is obeyed at the latter wavelength over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.2·104 l mole-1 cm-1 at 670 nm. Thorium can be determined in the presence of fluoride, oxalate, sulfate and EDTA. Many common cations do not interfere, but uranium, zirconium and niobium interfere seriously.  相似文献   

14.
A simple, direct colorimetric determination of thorium extracted from chloride solution with di-(2-ethylhexyl)orthophosphoric acid is described; the colour is developed in the organic phase by adding arsenazo III and then isopropanol. Two different procedures are outlined for different thorium levels; maximum absorbance occurs at 660 nm and Beer's law is obeyed within limited ranges. Molar extinction coefficients for the two methods are 4.93 · 104 and 8.77 · 104 respectively. With the more sensitive method, 0.696 μg Th/ml was determined with 0.0028 as standard deviation. The effects of the various parameters were studied. Among 69 foreign cations tested, serious interferences are U(VI), Se (IV), Ti(IV), Y and the rare earths. Of the common anions, only large amounts of sulpliate slightly interfered. Several ways of overcoming interferences are suggested, with particular-reference to uranium.Several extensions of the method are outlined; 2 p.p.b. Th in aqueous media can be determined by modifying the extraction step. The procedure also appears to be extremely sensitive for the light rare-earth elements.  相似文献   

15.
The effect of complexants—acetic, aminoacetic, tartaric, malonic, and oxalic acids; EDTA; and Na2CO3—on the adsorption and subsequent determination of thorium(IV), lanthanum(III), uranium(VI), and zirconium(IV) with Arsenazo M in the solid phase of polyacrylonitrile fiber filled with an ANKB-50 anion exchanger was studied. Complexing agents were introduced into the solution at the step of metal ion adsorption. It was shown that zirconium and uranium interacted with the iminodiacetate groups of the adsorbent in the course of adsorption; the adsorption of elements from 10?3 to 10?2 M complexant solutions (except for tartaric and oxalic acids and EDTA) under the optimum conditions was enhanced as compared to their adsorption from pure solutions; complexation with Arsenazo M in the solid phase proceeded at a higher acidity than in the solution. When the elements were present simultaneously, their total concentration and individual thorium could be determined from malonic acid solutions with Arsenazo M by varying the concentration of acid and the adsorption pH.  相似文献   

16.
A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV–MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0–1,200 and 0–2,000 μg L-1 Th and U, respectively). Limits of detection reached are 5.9 ηg L-1 of uranium and 60 ηg L-1 of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.  相似文献   

17.
Antipyrylazo III or diantipyrylazo (3,6-bis(4-antipyrylazo)-4,5-dihydroxy-2, 7-napthalenedisulfonic acid) forms at PH 12.7 a complex Ca2HL with calcium. The logarithmic overall stability constant, 10g β211, is 23.99 ±0.03 (0.1 MNaClO4,25°C).The effective molar absorptivity is 21,500 ±100 l mole-1 cm-1 at 605 nm. The complex can be used for a selective photometric determination of calcium(0.25–3.50μmole) if tri-and tetravalent ions are removed by extraction with cupferron (into chloroform) and transition divalent ions are masked with sodium cyanide. Only strontium (0.5 μmole) and EDTA (0.1 μmole) interfere seriously.  相似文献   

18.
Zusammenfassung Die extraktionschromatographische Abtrennung von Uran(IV) aus salpetersauren Lösungen wird beschrieben. Kolonnen mit Di-(2-äthylhexyl)-phosphorsäure (HDEHP) in Xylol als stationärer Phase wurden verwendet. Bei alleiniger Anwesenheit von Uran(IV) und Uran(VI) genügte es, mit Salpetersäure/0,1-m Hydrazin zu eluieren. Aus Lösungen komplexerer Zusammensetzung, die neben Uran(IV) und Uran(VI) auch noch längerlebige Spaltprodukte (144Ce,106Ru,95Nb und137Cs), Plutonium (III) und Korrosionsprodukte von Stahl [Fe(III), Co(II), Ni(II) und Cr(III)] enthielten, wurde das Uran(IV) auf zwei Arten abgetrennt. Bei der ersten Variante wurde es durch 5%iges HDEHP in Xylol an der Kolonne festgehalten und alle Begleitionen mit 2-n Salpetersäure/0,1-m Hydrazin entfernt. Bei der zweiten Variante konnte neben dem Uran (IV) auch das Uran(VI) in einer gesonderten Fraktion aufgefangen werden. Als stationäre Phase wurde 30%iges HDEHP, als Elutionsmittel 11,7-n Salpetersäure/0,1-m Hydrazin verwendet. Bei beiden Varianten konnte das Uran(IV) mit einem Gemisch aus 15% Schwefelsäure/5% Phosphorsäure von der Kolonne eluiert werden. Bei der ersten Variante konnte das Uran(IV) auch mit 11,7-n Salpetersäure/0,1-m Hydrazin eluiert werden, wenn es nach der Trennung in salpetersaurer Lösung vorliegen sollte. Die Stabilität der Kolonnen und des Uran(IV), der Einfluß der HDEHP-Konzentration in Xylol und der Salpetersäurekonzentration sowie das Verhalten einiger Ionen bei den Trennbedingungen werden besprochen.
Separation of uranium(VI) by extraction chromatography from the solutions resulting from nuclear technology
Summary The extraction-chromatographic separation of uranium(VI) from nitric acid solutions is described. Columns were employed containing di-(2-ethylhexyl)-phosphoric acid (HDEHP) in xylene as stationary phase. If only uranium(IV) and uranium(VI) are present, it is sufficient to elute with nitric acid/0.1M hydrazine. From solutions of more complex composition, which in addition to uranium(IV) and uranium(VI) also contain longer-lived fission products (144Ce,106Ru,95Nb and137Cs), plutonium(III) and corrosion products of steel [Fe(III), Co(II), Ni(II) and Cr(III)], the uranium(IV) was separated by two varieties. In the first variant it was retained on the column by 5% HDEHP in xylene and all accompanying ions were removed with 2N nitric acid/0.1M hydrazine. In the second variant, in addition to the uranium(IV), the uranium(VI) also was captured in a separate fraction. 30% HDEHP was employed as stationary phase, while the elution agent was 11.7N nitric acid/0.1M hydrazine. In both variants, the uranium(IV) could be eluted from the column by a mixture of 15% sulfuric acid/5% phosphoric acid. In the first variant, the uranium(IV) could also be eluted by means of 11.7N nitric acid/0.1M hydrazine in case it was planned to have it present after the separation in nitric acid solution. The stability of the columns and of the uranium(IV) and the influence of the HDEHP concentration in xylene and the nitric acid concentration as well as the behavior of several ions under the separation conditions are discussed.


Herrn o. Univ.-Prof. Dr.Hans Nowotny zum 60. Geburtstag gewidmet.  相似文献   

19.
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with α-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48 μg L−1, respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.  相似文献   

20.
《Electroanalysis》2003,15(21):1687-1692
Interfacial activity of uranium(VI)‐cupferron and uranium(VI)‐chloranilic acid (CAA) complexes (in 0.1 M acetate buffer pH 4.6 or 0.1 M NaClO4 respectively) on polarized mercury electrode at 110 mV, 10 mV or ?240 mV respectively vs. saturated calomel electrode (SCE), and under conditions of the application of adsorptive stripping voltammetric techniques was studied. It revealed a competitive effect of interfacial activity of the mentioned complexes consisting in a nonmonotonous effect of the bulk concentration of U(VI) on the adsorption of the mentioned complexing reagents at their constant concentrations. At concentrations lower than 5×10?5 mol L?1 the complexes U(VI)‐cupferron or U(VI)‐CAA exhibited a relatively strong electrosorption providing the adsorption coefficients β of the order 104 L mol?1, the maximum surface excess Γm ≈ 5 to 10 μmol m?2 and average Frumkin interaction coefficients reaching their absolute values 2 to 2.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号