首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
4‐Nitro‐1,2,3‐triazole was found to react with tert‐butanol in concentrated sulfuric acid to yield 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole as the only reaction product, whereas tert‐butylation and tritylation of 4‐nitro‐1,2,3‐triazole in presence of catalytic amount of sulfuric acid in benzene was found to provide mixtures of isomeric 1‐ and 2‐alkyl‐4‐nitro‐1,2,3‐triazoles with predominance of N2‐alkylated products. A new methodology for preparation of 1‐alkyl‐5‐nitro‐1,2,3‐triazoles from 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole via exhaustive alkylation followed by removal of tert‐butyl group from intermediate triazolium salts was demonstrated by the example of preparation of 1‐methyl‐5‐nitro‐1,2,3‐triazole.  相似文献   

2.
A simple method of synthesis of a new, highly fluorescent amino acid derivative from the simple and generally available substrates 3‐nitro‐L ‐tyrosine and 1H‐indole‐3‐carbaldehyde is described. The obtained compound, N‐[(tert‐butoxy)carbonyl]‐3‐[2‐(1H‐indol‐3‐yl)benzoxazol‐5‐yl]‐L ‐alanine methyl ester ( 4 ), possesses a high fluorescence quantum yield. The described method illustrates a new possibility of synthesis of amino acid derivatives possessing desirable photophysical properties.  相似文献   

3.
An efficent access to a series of N‐(pyrrol‐2‐yl)amines, namely (E)‐1‐tert‐butyl‐5‐[(4‐chlorobenzylidene)amino]‐1H‐pyrrole‐3‐carbonitrile, C16H16ClN3, (7a), (E)‐1‐tert‐butyl‐5‐[(2,4‐dichlorobenzylidene)amino]‐1H‐pyrrole‐3‐carbonitrile, C16H15Cl2N3, (7b), (E)‐1‐tert‐butyl‐5‐[(pyridin‐4‐ylmethylene)amino]‐1H‐pyrrole‐3‐carbonitrile, C15H16N4, (7c), 1‐tert‐butyl‐5‐[(4‐chlorobenzyl)amino]‐1H‐pyrrole‐3‐carbonitrile, C16H18ClN3, (8a), and 1‐tert‐butyl‐5‐[(2,4‐dichlorobenzyl)amino]‐1H‐pyrrole‐3‐carbonitrile, C16H17Cl2N3, (8b), by a two‐step synthesis sequence (solvent‐free condensation and reduction) starting from 5‐amino‐1‐tert‐butyl‐1H‐pyrrole‐3‐carbonitrile is described. The syntheses proceed via isolated N‐(pyrrol‐2‐yl)imines, which are also key synthetic intermediates of other valuable compounds. The crystal structures of the reduced compounds showed a reduction in the symmetry compared with the corresponding precursors, viz. Pbcm to P from compound (7a) to (8a) and P21/c to P from compound (7b) to (8b), probably due to a severe change in the molecular conformations, resulting in the loss of planarity observed in the nonreduced compounds. In all of the crystals, the supramolecular assembly is controlled mainly by strong (N,C)—H…N hydrogen bonds. However, in the case of (7a)–(7c), C—H…Cl interactions are strong enough to help in the three‐dimensional architecture, as observed in Hirshfeld surface maps.  相似文献   

4.
A new and convenient synthesis of 7‐(3‐chloropropoxy)‐4‐hydroxy‐6‐methoxyquinoline‐3‐carbonitrile, the key intermediate to bosutinib, is described on a hectogram scale. 5‐Bromo‐2‐methoxyphenol is adopted as the starting material via the simple chemical process including Friedel‐Crafts reaction, alkylation, bromination, cyano substitution, and so on to give the 3‐amino‐2‐(2‐bromobenzoyl)acrylonitrile compound 25 , which underwent key intramolecular cyclization at K2CO3/DMF condition; the title product was obtained in 36.9% yield over 7 steps and 98.71% purity (HPLC).  相似文献   

5.
Starting from 1‐[(tert‐butoxy)carbonyl]piperidine‐4‐carboxylic acid and 2‐bromoaniline, the spiro[indole‐3,4′‐piperidin]‐2‐one system was obtained in three high‐yielding steps: anilide formation, N(1)‐protection, and intramolecular cyclization under Pd catalysis as the key reaction. The preparation of the corresponding 2‐bromoanilide was studied. In extension, the same sequence was developed with 4‐methyl‐ and 4‐nitro‐2‐bromoaniline. In the key step, the NO2 group led to a rather diminished yield. The transformation of the protected spiro[indole‐3,4′‐piperidin]‐2‐one to the corresponding unprotected dihydroindoles is discussed.  相似文献   

6.
Two related compounds containing ptert‐butyl‐o‐methyl­ene‐linked phenol or phenol‐derived subunits are described, namely 5,5′‐di‐tert‐butyl‐2,2′‐di­hydroxy‐3,3′‐methyl­ene­di­benz­aldehyde, C23H28O4, (I), and 6,6′‐di‐tert‐butyl‐8,8′‐methyl­ene­bis­(spiro­[4H‐1,3‐benzo­di­oxin‐2,1′‐cyclo­hexane]), C35H48O4, (II). Both compounds adopt a `butterfly' shape, with the two phenol or phenol‐derived O atoms in distal positions. Phenol and aldehyde groups in (I) are involved in intramolecular hydrogen bonds and the two dioxin rings in (II) are in distorted half‐chair conformations.  相似文献   

7.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

8.
A series of novel N‐aryl‐4‐(tert‐butyl)‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amines synthesized in a green way. H2O2‐NaBr Brominating circulatory system was used in the synthesis of the key intermediate in a mild condition. All of the target compounds were confirmed by 1H NMR and elemental analysis and tested for their cytotoxicity against two different human cancer cell lines. The cytotoxicity assay revealed that some of the title compounds showed moderate to strong cytotoxic activities. Compound 2i was the most potent compound with the IC50 values of 9 μM against Hela cells and 15 μM against Bel–7402 cells, respectively.  相似文献   

9.
The highly enantioselective organocatalytic addition of ethyl nitroacetate to isatin‐derived N‐Boc ketimines (Boc=tert‐butoxycarbonyl), followed by the removal of the nitro group, is described. The scalable reaction sequence leads to the title compounds as important intermediates of pyrroloindoline alkaloids and related drugs in excellent yields and enantioselectivities. The synthesis of the hexahydrofurano[2,3‐b]indole skeleton, the spirocarbamate oxindole unit, and the formal synthesis of AG‐041R have been carried out to demonstrate the synthetic utility of this protocol.  相似文献   

10.
This study presents the first synthesis and characterization of a new high energy compound [1,2,3,4]tetrazino[5,6‐e][1,2,3,4]tetrazine 1,3,6,8‐tetraoxide (TTTO). It was synthesized in ten steps from 2,2‐bis(tert‐butyl‐NNO‐azoxy)acetonitrile. The synthetic strategy was based on the sequential closure of two 1,2,3,4‐tetrazine 1,3‐dioxide rings by the generation of oxodiazonium ions and their intramolecular coupling with tert‐butyl‐NNO‐azoxy groups. The TTTO structure was confirmed by single‐crystal X‐ray.  相似文献   

11.
The title compound, C38H48NOP, isolated from the reaction of (2‐diphenylphosphanyl‐4,6‐di‐tert‐butyl)phenol with 2,6‐diisopropylphenyl azide at 273 K, can act as an N,O‐bidentate ligand. Crystal structure analysis shows a deviation from ideal tetrahedral symmetry around the P atom. The molecule exists as a monomer in the solid state, whose conformation is stabilized via multiple intramolecular hydrogen bonds. Geometric parameters from both experimental and theoretical calculations are compared.  相似文献   

12.
(?)‐Platensimycin is a potent inhibitor of fatty acid synthase that holds promise in the treatment of metabolic disorders (e.g., diabetes and “fatty liver”) and pathogenic infections (e.g., those caused by drug‐resistant bacteria). Herein, we describe its total synthesis through a four‐step preparation of the aromatic amine fragment and an improved stereocontrolled assembly of the ketolide fragment, (?)‐platensic acid. Key synthetic advances include 1) a modified Lieben haloform reaction to directly convert an aryl methyl ketone into its methyl ester within 30 seconds, 2) an experimentally improved dialkylation protocol to form platensic acid, 3) a sterically controlled chemo‐ and diastereoselective organocatalytic conjugate reduction of a spiro‐cyclized cyclohexadienone by using the trifluoroacetic acid salt of α‐amino di‐tert‐butyl malonate, 4) a tetrabutylammonium fluoride promoted spiro‐alkylative para dearomatization of a free phenol to assemble the cagelike ketolide core with the moderate leaving‐group ability of an early tosylate intermediate, and 5) a bismuth(III)‐catalyzed Friedel–Crafts cyclization of a free lactol, with LiClO4 as an additive to liberate a more active oxocarbenium perchlorate species and suppress the Lewis basicity of the sulfonyloxy group. The longest linear sequence is 21 steps with an overall yield of 3.8 % from commercially available eugenol.  相似文献   

13.
A novel imidazo[4′,5′:3,4]pyrazolo[5,1‐c][1,2,4]triazine‐4,8‐dione heterocyclic system was synthesized starting from available 4‐amino‐6‐tert‐butyl‐3‐methylthio‐1,2,4‐triazin‐5(4H)‐one in four steps with 28% overall yield.  相似文献   

14.
3′‐Amino‐3′‐deoxyguanosine was synthesized from guanosine in eight steps and 58% overall yield. The 2′,3′‐diol of 5′‐O‐[(tert‐butyl)diphenylsilyl]‐2‐N‐[(dimethylamino)methylidene]guanosine was reacted with α‐acetoxyisobutyryl bromide and treated with 0.5n NH3 in MeOH to yield 9‐{2′‐O‐acetyl‐3′‐bromo‐5′‐O‐[(tert‐butyl)diphenylsilyl]‐3′‐deoxy‐β‐D ‐xylofuranosyl]‐2‐N‐[(dimethylamino)methylidene]guanine, which was reacted with benzyl isocyanate, NaH, and then 3.0n NaOH, and finally with Pd/C (10%) and HCO2NH4 in EtOH/AcOH to afford 3′‐amino‐3′‐deoxyguanosine.  相似文献   

15.
The title compound, C15H20N4O, has been synthesized as an AADD recognition unit for quadruple hydrogen bonds. All non‐H atoms of the mol­ecule apart from two methyl groups of the tert‐butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by N—H?O=C interactions with an N?O distance of 2.824 (2) Å.  相似文献   

16.
The synthesis of 6‐methylsulfanyl‐2,4‐dithioxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile 4 is described. Compound 4 was reacted with various alkylants. The reaction with chloroacetic acid derivatives results in the formation of thieno[2,3‐d]pyrimidines 8 . When methyl iodide was used 2,4,6‐tris(methylsul‐fanyl)pyrimidine‐5‐carbonitrile 5 was obtained. The substitution of the methylsulfanyl groups in compound 5 by several N‐nuclophiles leads to amino substituted pyrimidines.  相似文献   

17.
In the title compound, C31H29N3O2, the reduced pyridine ring adopts a conformation intermediate between the envelope and half‐chair forms. The aryl rings of the benzyl and phenyl substituents are nearly parallel and overlap, indicative of an intramolecular π–π stacking interaction. A combination of two C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a bilayer having tert‐butyl groups on both faces.<!?tpb=19.5pt>  相似文献   

18.
A tandem imine addition‐SNAr annulation reaction has been developed as a new approach to the synthesis of 4‐oxo‐1,2,3,4‐tetrahydroquinoline‐3‐carboxylic esters. A series of these structures has been generated by reacting selected imines with tert‐butyl 2‐fluoro‐5‐nitrobenzoylacetate. Structural variations in the final products are accomplished by changing the substituents on the imine and the alkyl group of the ester. The title compounds are isolated as their enols in 55–97% yield without the need for added base or catalysts. The synthesis of the starting materials as well as mechanistic studies and further synthetic conversions of the products are presented.  相似文献   

19.
Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible‐light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent‐free hydroxylation of benzene derivatives with electron‐withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3‐dichloro‐5,6‐dicyanohydroquinone (DDQH2) in the presence of water under deaerated conditions. In the presence of dioxygen and tert‐butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto‐ and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH‐adduct radicals. On the other hand, DDQ . ? produced by the photoinduced electron transfer from benzene derivatives reacts with the OH‐adduct radicals to yield the corresponding phenol derivatives and DDQH2. DDQ is recovered by the reaction of DDQH2 with tert‐butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.  相似文献   

20.
1‐[2‐Phenyl‐1‐diazenyl]‐1‐[2‐phenylhydrazono]acetone or 1‐[‐2‐(4‐methylphenyl)‐1‐diazenyl]‐1‐[‐2‐(4‐methylphenyl)hydrazono]‐butan‐2‐one were produced via coupling the (E) 2‐oxopropanal‐1‐phenyl‐hydrazone or (E) 2‐oxobutanal‐1‐(4‐methylphenyl)hydrazone with aromatic diazonium salts. These formazanes condensed readily with ethyl cyanoacetate to yield 5‐methyl‐3‐oxo‐2‐phenyl‐6‐phenylazo‐2,3‐dihydropyridazine‐4‐carbonitrile compound ( 9a ), 5‐ethyl‐3‐oxo‐2‐p‐tolyl‐6‐p‐tolylazo‐2,3‐dihydro‐pyridazine‐4‐carbonitrile and/or 5‐ethyl‐3‐oxo‐2,6‐di‐p‐tolyl‐2,3‐dihydropyridazine‐4‐carbonitrile that reacted with sulphur in presence of piperidine to yield the aminothienopyridazinones. The latter reacted with electron poor olefins and acetylenes to yield aminophthalazines. Compound ( 9a ) reacted also with benzylidenemalononitrile to yield the arylazophthalazinone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号