首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The catalytic activity of diamond‐supported gold nanoparticle (Au/D) samples prepared by the deposition/precipitation method have been correlated as a function of the pH and the reduction treatment. It was found that the most active material is the one prepared at pH 5 followed by subsequent thermal treatment at 300 °C under hydrogen. TEM images show that Au/D prepared under optimal conditions contain very small gold nanoparticles with sizes below 2 nm that are proposed to be responsible for the catalytic activity. Tests of productivity using large phenol (50 g L ?1) and H2O2 excesses (100 g L ?1) and reuse gives a minimum TON of 458,759 moles of phenol degraded per gold atom. Analysis of the organic compounds extracted from the deactivated solid catalyst indicates that the poisons are mostly hydroxylated dicarboxylic acids arising from the degradative oxidation of the phenyl ring. By determining the efficiency for phenol degradation and the amount of O2 evolved two different reactions of H2O2 decomposition (the Fenton reaction at acidic pH values and spurious O2 evolution at basic pH values) are proposed for Au/D catalysis. The activation energy of the two processes is very similar (ranging between 30 and 35 kJ mol?1). By using dimethylsulfoxide as a radical scavenger and Ntert‐butyl‐α‐phenylnitrone as a spin trap under aerated conditions, the EPR spectrum of the expected PBN? OCH3 adduct was detected, supporting the generation of HO., characteristic of Fenton chemistry in the process. Phenol degradation, on the other hand, exhibits the same activation energy as H2O2 decomposition at pH 4 (due to the barrierless attack of HO. to phenol), but increases the activation energy gradually up to about 90 kJ mol?1 at pH 7 and then undergoes a subsequent reduction as the pH increases reaching another minimum at pH 8.5 (49 kJ mol?1).  相似文献   

2.
The particle size effect of Pd nanoparticles supported on alumina with various crystalline phases on methane combustion was investigated. Pd/θ, α‐Al2O3 with weak metal‐support interaction showed a volcano‐shaped dependence of the catalytic activity on the size of Pd particles, and the catalytic activity of the strongly interacted Pd/γ‐Al2O3 increased with the particle size. Based on a structural analysis of Pd nanoparticles using CO adsorption IR spectroscopy and spherical aberration‐corrected scanning/transmission electron microscopy, the dependence of catalytic activity on Pd particle size and the alumina crystalline phase was due to the fraction of step sites on Pd particle surface. The difference in fraction of the step site is derived from the particle shape, which varies not only with Pd particle size but also with the strength of metal–support interaction. Therefore, this interaction perturbs the particle size effect of Pd/Al2O3 for methane combustion.  相似文献   

3.
Three supported Au catalysts have been prepared by the deposition‐precipitation method by using the active carbon (AC), SiO2‐AC, and SiO2‐AC‐hollowed. The 3 supports were characterized by Brunauer‐Emmett‐Teller and scanning electron microscopy. Meanwhile, the supported Au nanoparticles were also characterized in detail by X‐ray powder diffraction, transmission electron microscopy, H2‐TRP, and X‐ray photoelectron spectroscopy, and their catalytic activity and stability in CO oxidation was evaluated. The results demonstrated that Au supported on SiO2‐AC‐hollowed exhibited much higher catalytic activity with acceptable stability for 72 hours than the other 2. We attributed to finer supported Au nanoparticles with abundant low‐coordinated Au atoms on the surfaces of hollowed supports with large special surface area and abundant pore structure. In summary, we successfully found an efficient and cheap method to prepare catalysts with high catalytic activity and acceptable stability by modifying the inactive supports.  相似文献   

4.
Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO–Au NPs) were obtained by the in situ reduction of GO and AuCl4?(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR‐excited hot electrons to O2 molecules adsorbed from air. The SPR‐mediated catalytic oxidation of p‐aminothiophenol (PATP) to p,p′‐dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR‐mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge‐transfer processes from rGO to Au took place and contributed to improved SPR‐mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR‐excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au‐to‐O2 charge‐transfer process.  相似文献   

5.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]⋅n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was −67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

6.
Nanoparticulate gold supported on a Keggin‐type polyoxometalate (POM), Cs4[α‐SiW12O40]?n H2O, was prepared by the sol immobilization method. The size of the gold nanoparticles (NPs) was approximately 2 nm, which was almost the same as the size of the gold colloid precursor. Deposition of gold NPs smaller than 2 nm onto POM (Au/POM) was essential for a high catalytic activity for CO oxidation. The temperature for 50 % CO conversion was ?67 °C. The catalyst showed extremely high stability for at least one month at 0 °C with full conversion. The catalytic activity and the reaction mechanism drastically changed at temperatures higher than 40 °C, showing a unique behavior called a U‐shaped curve. It was revealed by IR measurement that Auδ+ was a CO adsorption site and that adsorbed water promoted CO oxidation for the Au/POM catalyst. This is the first report on CO oxidation utilizing Au/POMs catalysts, and there is a potential for expansion to various gas‐phase reactions.  相似文献   

7.
Au‐Fe3O4 nanoparticles were widely used as nanoplatforms for biologic applications through readily further functionalization. Dopamine (DA)‐coated superparamagnetic iron oxide (SPIO) nanoparticles (DA@Fe3O4) have been successfully synthesized using a one‐step process by modified coprecipitation method. Then 2–3 nm gold nanoparticles were easily conjugated to DA@Fe3O4 nanoparticles by the electrostatic force between gold nanoparticles and amino groups of dopamine to afford water‐soluble Au‐Fe3O4 hybrid nanoparticles. A detailed investigation by dynamic light scatting (DLS), transmission electron microscopy (TEM), fourier transform infrared (FT‐IR) and X‐ray diffraction (XRD) were performed in order to characterize the physicochemical properties of the hybrid nanoparticles. The hybrid nanoparticles were easily functionalized with a targeted small peptide A54 (AGKGTPSLETTP) and fluorescence probe fluorescein isothiocyanate (FITC) for liver cancer cell BEL‐7402 imaging. This simple approach to prepare hybrid nanoparticles provides a facile nanoplatform for muti‐functional derivations and may be extended to the immobilization of other metals or bimolecular on SPIO surface.  相似文献   

8.
Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid‐phase catalytic reactions (e.g., hydrogenation of biomass‐derived furfural in alcoholic solvents or water), thereby eliminating the deactivation of conventional catalysts by sintering and leaching. This method of catalyst stabilization alleviates the need to employ precious metals (e.g., platinum) in liquid‐phase catalytic processing. The alumina overcoat initially covers the catalyst surface completely. By using solid state NMR spectroscopy, X‐ray diffraction, and electron microscopy, it was shown that high temperature treatment opens porosity in the overcoat by forming crystallites of γ‐Al2O3. Infrared spectroscopic measurements and scanning tunneling microscopy studies of trimethylaluminum ALD on copper show that the remarkable stability imparted to the nanoparticles arises from selective armoring of under‐coordinated copper atoms on the nanoparticle surface.  相似文献   

9.
Gold nanoparticles (Au‐NPs) were reproducibly obtained by thermal, photolytic, or microwave‐assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl4 in the presence of n‐butylimidazol dispersed in the ionic liquids (ILs) BMIm+BF4?, BMIm+OTf?, or BtMA+NTf2? (BMIm+=n‐butylmethylimidazolium, BtMA+=n‐butyltrimethylammonium, OTf?=?O3SCF3, NTf2?=?N(O2SCF3)2). The ultra small and uniform nanoparticles of about 1–2 nm diameter were produced in BMIm+BF4? and increased in size with the molecular volume of the ionic liquid anion used in BMIm+OTf? and BtMA+NTf2?. Under argon the Au‐NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au‐NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a Au???F interaction and anionic Aun stabilization in fluorine‐containing ILs. The 19F NMR signal in BMIm+BF4? shows a small Au‐NP concentration‐dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).  相似文献   

10.
Although the α‐oxygenation of amines is a highly attractive method for the synthesis of amides, efficient catalysts suited to a wide range of secondary and tertiary alkyl amines using O2 as the terminal oxidant have no precedent. This report describes a novel, green α‐oxygenation of a wide range of linear and cyclic secondary and tertiary amines mediated by gold nanoparticles supported on alumina (Au/Al2O3). The observed catalysis was truly heterogeneous, and the catalyst could be reused. The present α‐oxygenation utilizes O2 as the terminal oxidant and water as the oxygen atom source of amides. The method generates water as the only theoretical by‐product, which highlights the environmentally benign nature of the present reaction. Additionally, the present α‐oxygenation provides a convenient method for the synthesis of 18O‐labeled amides using H218O as the oxygen source.  相似文献   

11.
A new heterogeneous catalyst derived from gold (III) and supported on caffeine‐coated magnetic nanoparticles, Fe3O4@Caff‐Au, has been prepared and characterized using different techniques. This magnetic gold composite shows high catalytic activity in A3 coupling reactions of terminal alkynes, aldehydes and secondary amines. Using this green catalyst, propargylamines are obtained in high turnover frequency in short reaction times using water as solvent at room temperature. This stable and ready accessible catalyst can be easily recycled magnetically for at least nine consecutive runs without significant loss of activity and with slight aggregation of Au species.  相似文献   

12.
The preparation of a new nickel(0)/Al2O3 catalyst for hydrogenation reactions is described. The nickel(0)/Al2O3 catalysts were prepared by impregnation of alumina with a solution of a nickel(II) salt. After drying, the nickel(II) salt was reduced under mild conditions into nickel(0) using t‐BuONa‐activated sodium hydride in tetrahydrofuran at 65 °C. The nickel(0)/Al2O3 catalysts obtained were characterized by transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. The supported catalysts were successfully used in solution‐phase hydrogenation of double and triple bonds. Although the activity of the nickel(0)/Al2O3 is comparable to non‐supported nickel(0) reagents, it has the advantage of being reusable more than ten times with only a slight decrease of reactivity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The objectives of this paper are to study the crystallization behavior and fracture characteristics of spherical alumina (Al2O3) nanoparticle‐filled polypropylene (PP) composites. Nanocomposites containing 1.5–5.0 wt % of the Al2O3 nanoparticles (pretreated with silane coupling agent) were prepared for this investigation. Wide angle X‐ray diffraction (WAXD) results show that a small amount of β‐crystal of PP forms after adding the Al2O3 nanoparticles. According to differential scanning calorimetric (DSC) and optical microscopy (OM) measurements, the Al2O3 nanoparticles make PP spherulite size reduced and crystallization temperature of PP enhanced, by acting as effective nucleating agents. However, there are no obvious differences in the crystallinity for the virgin PP and the Al2O3/PP nanocomposites. Tensile test shows that both the Young's modulus and the yield strength of the Al2O3/PP nanocomposites increase with the particle content increasing, suggesting that the interfacial interaction between the nanoparticles and PP matrix is relatively strong. Under quasi‐static loading rate, the fracture toughness (KIC) of the Al2O3/PP nanocomposites was found to be insensitive to nanoparticle content. Under impact loading rate, the Izod impact strength and the impact fracture toughness (Gc) indicate that the impact fracture toughness increases initially with the addition of 1.5 wt % of the Al2O3 nanofillers into the PP matrix. However, with the further addition of up to 3.0 and 5.0 wt % nanoparticles, both the Izod impact strength and impact Gc change very little. By observing the single‐edge‐double‐notch (SEDN) specimens with optical microscopy after four point bending (4PB) tests, it was found that numerous crazes and microcracks form around the subcritical crack tip, indicating that crazing and microcracking are the dominant fracture mechanisms. Scanning electron microscopy (SEM) observation confirms this result. In addition, when the strain rate of 4PB tests was increased, some wave‐like branches were formed along the fractured edge for the Al2O3/PP nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3652–3664, 2005  相似文献   

15.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

16.
Supported gold nanoparticle catalysts show extraordinarily high activity in many reactions. While the relative poor thermal stability of Au nanoparticles against sintering at elevated temperatures severely limits their practical applications. Here atomic layer deposition (ALD) of TiO2 and Al2O3 was performed to deposit an Au/TiO2 catalyst with precise thickness con-trol, and the thermal stability was investigated. We surprisingly found that sub-nanometer-thick Al2O3 overcoat can su ciently inhibit the aggregation of Au particles up to 600 C in oxygen. On the other hand, the enhancement of Au nanoparticle stability by TiO2 overcoat is very limited. Di use reffectance infrared Fourier transform spectroscopy (DRIFTS) of CO chemisorption and X-ray photoelectron spectroscopy measurements both con rmed the ALD overcoat on Au particles surface and suggested that the presence of TiO2 and Al2O3 ALD overcoat on Au nanoparticles does not considerably change the electronic properties of Au nanoparticles. The catalytic activities of the Al2O3 overcoated Au/TiO2 catalysts in CO oxidation increased as increasing calcination temperature, which suggests that the embed-ded Au nanoparticles become more accessible for catalytic function after high temperature treatment, consistent with our DRIFTS CO chemisorption results.  相似文献   

17.
Three different forms of carbon, i.e., multi-walled carbon nanotubes (CNTs), single-walled CNTs, and soot, were decorated with gold nanoparticles by a new method. In this method C10H8 ions transfer electrons to the CNTs or soot. These electrons on the carbon surface can then reduce Au3+ species to form supported Au nanoparticles with a narrow particle size distribution. Thermogravimetric/differential thermal analyses (TG/DTA), XRD, Raman, and TEM show that naphthalene molecules remain trapped inside the Au nanoparticles and can only be removed by treatment at ca. 300 °C. Remarkable effect of the Au nanoparticles on the oxidation of carbon by O2 is also observed by TG/DTA, i.e., on-set oxidation temperature and activation energy (E a). It is shown that as the Au particle size decreases from 25 to 2 nm a linear decrease of the oxidation temperature is observed. Au particles larger than 25 nm do not produce any significant effect on carbon oxidation. These results are discussed in terms of spillover catalytic effect where Au nanoparticles activate O2 molecules to produce active oxygen species which oxidize the different carbon supports.  相似文献   

18.
Gold nanoparticles loaded onto Keggin‐type insoluble polyoxometalates (CsxH3?xPW12O40) showed superior catalytic performances for the direct conversion of cellobiose into gluconic acid in water in the presence of O2. The selectivity of Au/CsxH3?xPW12O40 for gluconic acid was significantly higher than those of Au catalysts loaded onto typical metal oxides (e.g., SiO2, Al2O3, and TiO2), carbon nanotubes, and zeolites (H‐ZSM‐5 and HY). The acidity of polyoxometalates and the mean‐size of the Au nanoparticles were the key factors in the catalytic conversion of cellobiose into gluconic acid. The stronger acidity of polyoxometalates not only favored the conversion of cellobiose but also resulted in higher selectivity of gluconic acid by facilitating desorption and inhibiting its further degradation. On the other hand, the smaller Au nanoparticles accelerated the oxidation of glucose (an intermediate) into gluconic acid, thereby leading to increases both in the conversion of cellobiose and in the selectivity of gluconic acid. The Au/CsxH3?xPW12O40 system also catalyzed the conversion of cellulose into gluconic acid with good efficiency, but it could not be used repeatedly owing to the leaching of a H+‐rich hydrophilic moiety over long‐term hydrothermal reactions. We have demonstrated that the combination of H3PW12O40 and Au/Cs3.0PW12O40 afforded excellent yields of gluconic acid (about 85 %, 418 K, 11 h), and the deactivation of the recovered H3PW12O40–Au/Cs3.0PW12O40 catalyst was not serious during repeated use.  相似文献   

19.
Catalytic direct dehydrogenation of methanol to formaldehyde was carried out over Ag‐SiO2‐MgO‐Al2O3 catalysts prepared by sol‐gel method. The optimal preparation mass fractions were determined as 8.3% MgO, 16.5% Al2O3 and 20% silver loading. Using this optimum catalyst, excellent activity and selectivity were obtained. The conversion of methanol and the selectivity to formaldehyde both reached 100%, which were much higher than other previously reported silver supported catalysts. Based on combined characterizations, such as X‐ray diffraction (XRD), scanning electronic microscopy (SEM), diffuse reflectance ultraviolet‐visible spectroscopy (UV‐Vis, DRS), nitrogen adsorption at low temperature, temperature programmed desorption of ammonia (NH3‐TPD), desorption of CO2 (CO2‐TPD), etc., the correlation of the catalytic performance to the structural properties of the Ag‐SiO2‐ MgO‐Al2O3 catalyst was discussed in detail. This perfect catalytic performance in the direct dehydrogenation of methanol to formaldehyde without any side‐products is attributed to its unique flower‐like structure with a surface area less than 1 m2/g, and the strong interactions between neutralized support and the nano‐sized Ag particles as active centers.  相似文献   

20.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号