共查询到20条相似文献,搜索用时 15 毫秒
1.
Carsten Kutzner Szilárd Páll Martin Fechner Ansgar Esztermann Bert L. de Groot Helmut Grubmüller 《Journal of computational chemistry》2019,40(27):2418-2431
We identify hardware that is optimal to produce molecular dynamics (MD) trajectories on Linux compute clusters with the GROMACS 2018 simulation package. Therefore, we benchmark the GROMACS performance on a diverse set of compute nodes and relate it to the costs of the nodes, which may include their lifetime costs for energy and cooling. In agreement with our earlier investigation using GROMACS 4.6 on hardware of 2014, the performance to price ratio of consumer GPU nodes is considerably higher than that of CPU nodes. However, with GROMACS 2018, the optimal CPU to GPU processing power balance has shifted even more toward the GPU. Hence, nodes optimized for GROMACS 2018 and later versions enable a significantly higher performance to price ratio than nodes optimized for older GROMACS versions. Moreover, the shift toward GPU processing allows to cheaply upgrade old nodes with recent GPUs, yielding essentially the same performance as comparable brand-new hardware. © 2019 Wiley Periodicals, Inc. 相似文献
2.
We present a method of parallelizing flat histogram Monte Carlo simulations, which give the free energy of a molecular system as an output. In the serial version, a constant probability distribution, as a function of any system parameter, is calculated by updating an external potential that is added to the system Hamiltonian. This external potential is related to the free energy. In the parallel implementation, the simulation is distributed on to different processors. With regular intervals the modifying potential is summed over all processors and distributed back to every processor, thus spreading the information of which parts of parameter space have been explored. This implementation is shown to decrease the execution time linearly with added number of processors. 相似文献
3.
The distributed diagonal force decomposition method for parallelizing molecular dynamics simulations
Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. 相似文献
4.
Kutzner C van der Spoel D Fechner M Lindahl E Schmitt UW de Groot BL Grubmüller H 《Journal of computational chemistry》2007,28(12):2075-2084
We investigate the parallel scaling of the GROMACS molecular dynamics code on Ethernet Beowulf clusters and what prerequisites are necessary for decent scaling even on such clusters with only limited bandwidth and high latency. GROMACS 3.3 scales well on supercomputers like the IBM p690 (Regatta) and on Linux clusters with a special interconnect like Myrinet or Infiniband. Because of the high single-node performance of GROMACS, however, on the widely used Ethernet switched clusters, the scaling typically breaks down when more than two computer nodes are involved, limiting the absolute speedup that can be gained to about 3 relative to a single-CPU run. With the LAM MPI implementation, the main scaling bottleneck is here identified to be the all-to-all communication which is required every time step. During such an all-to-all communication step, a huge amount of messages floods the network, and as a result many TCP packets are lost. We show that Ethernet flow control prevents network congestion and leads to substantial scaling improvements. For 16 CPUs, e.g., a speedup of 11 has been achieved. However, for more nodes this mechanism also fails. Having optimized an all-to-all routine, which sends the data in an ordered fashion, we show that it is possible to completely prevent packet loss for any number of multi-CPU nodes. Thus, the GROMACS scaling dramatically improves, even for switches that lack flow control. In addition, for the common HP ProCurve 2848 switch we find that for optimum all-to-all performance it is essential how the nodes are connected to the switch's ports. This is also demonstrated for the example of the Car-Parinello MD code. 相似文献
5.
Van Der Spoel D Lindahl E Hess B Groenhof G Mark AE Berendsen HJ 《Journal of computational chemistry》2005,26(16):1701-1718
This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org. 相似文献
6.
Carsten Kutzner Szilárd Páll Martin Fechner Ansgar Esztermann Bert L. de Groot Helmut Grubmüller 《Journal of computational chemistry》2015,36(26):1990-2008
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 相似文献
7.
Duan Y Wu C Chowdhury S Lee MC Xiong G Zhang W Yang R Cieplak P Luo R Lee T Caldwell J Wang J Kollman P 《Journal of computational chemistry》2003,24(16):1999-2012
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. 相似文献
8.
A parallel Fock matrix construction program for a hierarchical network has been developed on the molecular orbital calculation-specific EHPC system. To obtain high parallelization efficiency on the hierarchical network system, a multilevel dynamic load-balancing scheme was adopted, which provides equal load balance and localization of communications on a tree-structured hierarchical network. The parallelized Fock matrix construction routine was implemented into a GAMESS program on the EHPC system, which has a tree-structured hierarchical network. Benchmark results on a 63-processor system showed high parallelization efficiency even on the tree-structured hierarchical network. 相似文献
9.
Based on our critique of requirements for performing an efficient molecular dynamics simulation with the particle-mesh Ewald (PME) implementation in GROMACS 4.5, we present a computational tool to enable the discovery of parameters that produce a given accuracy in the PME approximation of the full electrostatics. Calculations on two parallel computers with different processor and communication structures showed that a given accuracy can be attained over a range of parameter space, and that the attributes of the hardware and simulation system control which parameter sets are optimal. This information can be used to find the fastest available PME parameter sets that achieve a given accuracy. We hope that this tool will stimulate future work to assess the impact of the quality of the PME approximation on simulation outcomes, particularly with regard to the trade-off between cost and scientific reliability in biomolecular applications. 相似文献
10.
The usefulness of free-energy calculations in non-academic environments, in general, and in the pharmaceutical industry, in particular, is a long-time debated issue, often considered from the angle of cost/performance criteria. In the context of the rational drug design of low-affinity, non-peptide inhibitors to the SH2 domain of the (pp60)src tyrosine kinase, the continuing difficulties encountered in an attempt to obtain accurate free-energy estimates are addressed. free-energy calculations can provide a convincing answer, assuming that two key-requirements are fulfilled: (i) thorough sampling of the configurational space is necessary to minimize the statistical error, hence raising the question: to which extent can we sacrifice the computational effort, yet without jeopardizing the precision of the free-energy calculation? (ii) the sensitivity of binding free-energies to the parameters utilized imposes an appropriate parametrization of the potential energy function, especially for non-peptide molecules that are usually poorly described by multipurpose macromolecular force fields. Employing the free-energy perturbation method, accurate ranking, within +/-0.7 kcal/mol, is obtained in the case of four non-peptide mimes of a sequence recognized by the (pp60)src SH2 domain. 相似文献
11.
Stephanie B. A. De Beer Alice GlÄttli Johannes Hutzler Nico P. E. Vermeulen Chris Oostenbrink 《Journal of computational chemistry》2011,32(10):2160-2169
4‐Hydroxyphenylpyruvate dioxygenase is a relevant target in both pharmaceutical and agricultural research. We report on molecular dynamics simulations and free energy calculations on this enzyme, in complex with 12 inhibitors for which experimental affinities were determined. We applied the thermodynamic integration approach and the more efficient one‐step perturbation. Even though simulations seem well converged and both methods show excellent agreement between them, the correlation with the experimental values remains poor. We investigate the effect of slight modifications on the charge distribution of these highly conjugated systems and find that accurate models can be obtained when using improved force field parameters. This study gives insight into the applicability of free energy methods and current limitations in force field parameterization. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011 相似文献
12.
Shaw DE 《Journal of computational chemistry》2005,26(13):1318-1328
Classical molecular dynamics simulations of biological macromolecules in explicitly modeled solvent typically require the evaluation of interactions between all pairs of atoms separated by no more than some distance R, with more distant interactions handled using some less expensive method. Performing such simulations for periods on the order of a millisecond is likely to require the use of massive parallelism. The extent to which such simulations can be efficiently parallelized, however, has historically been limited by the time required for interprocessor communication. This article introduces a new method for the parallel evaluation of distance-limited pairwise particle interactions that significantly reduces the amount of data transferred between processors by comparison with traditional methods. Specifically, the amount of data transferred into and out of a given processor scales as O(R(3/2)p(-1/2)), where p is the number of processors, and with constant factors that should yield a substantial performance advantage in practice. 相似文献
13.
Sally R. Ellingson Jeremy C. Smith Jerome Baudry 《Journal of computational chemistry》2013,34(25):2212-2221
The program VinaMPI has been developed to enable massively large virtual drug screens on leadership‐class computing resources, using a large number of cores to decrease the time‐to‐completion of the screen. VinaMPI is a massively parallel Message Passing Interface (MPI) program based on the multithreaded virtual docking program AutodockVina, and is used to distribute tasks while multithreading is used to speed‐up individual docking tasks. VinaMPI uses a distribution scheme in which tasks are evenly distributed to the workers based on the complexity of each task, as defined by the number of rotatable bonds in each chemical compound investigated. VinaMPI efficiently handles multiple proteins in a ligand screen, allowing for high‐throughput inverse docking that presents new opportunities for improving the efficiency of the drug discovery pipeline. VinaMPI successfully ran on 84,672 cores with a continual decrease in job completion time with increasing core count. The ratio of the number of tasks in a screening to the number of workers should be at least around 100 in order to have a good load balance and an optimal job completion time. The code is freely available and downloadable. Instructions for downloading and using the code are provided in the Supporting Information. © 2013 Wiley Periodicals, Inc. 相似文献
14.
Phillips JC Braun R Wang W Gumbart J Tajkhorshid E Villa E Chipot C Skeel RD Kalé L Schulten K 《Journal of computational chemistry》2005,26(16):1781-1802
15.
Different integrator time steps in NVT and NVE simulations of protein and nucleic acid systems are tested with the GBMV (Generalized Born using Molecular Volume) and GBSW (Generalized Born with simple SWitching) methods. The simulation stability and energy conservation is investigated in relation to the agreement with the Poisson theory. It is found that very close agreement between generalized Born methods and the Poisson theory based on the commonly used sharp molecular surface definition results in energy drift and simulation artifacts in molecular dynamics simulation protocols with standard 2-fs time steps. New parameters are proposed for the GBMV method, which maintains very good agreement with the Poisson theory while providing energy conservation and stable simulations at time steps of 1 to 1.5 fs. 相似文献
16.
Per Larsson Rosita C. Kneiszl Erik G. Marklund 《Journal of computational chemistry》2020,41(16):1564-1569
The absolute performance of any all-atom molecular dynamics simulation is typically limited by the length of the individual timesteps taken when integrating the equations of motion. In the GROMACS simulation software, it has for a long time been possible to use so-called virtual sites to increase the length of the timestep, resulting in a large gain of simulation efficiency. Up until now, support for this approach has in practice been limited to the standard 20 amino acids however, shrinking the applicability domain of virtual sites. MkVsites is a set of python tools which provides a convenient way to obtain all parameters necessary to use virtual sites for virtually any molecules in a simulation. Required as input to MkVsites is the molecular topology of the molecule(s) in question, along with a specification of where to find the parent force field. As such, MkVsites can be a very valuable tool suite for anyone who is routinely using GROMACS for the simulation of molecular systems. 相似文献
17.
The molecular-dynamics-based calculation of accurate free energy differences for biomolecular systems is a challenging task. Accordingly, convergence and accuracy of established equilibrium methods has been subject of many studies, often focusing at small test systems. In contrast, the potential of more recently proposed nonequilibrium methods, derived from the Jarzynski and Crooks equalities, has not yet fully been explored. Here, we compare the performance of these methods by calculating free energy differences for test systems at different levels of complexity and varying extent of the involved perturbations. We consider the interconversion of ethane into methanol, the switching of a tryptophane-sidechain in a tripeptide, and the binding of two different ligands to the globular protein snurportin 1. On the basis of our results, we suggest and assess a new nonequilibrium free energy method, Crooks Gaussian Intersection (CGI), which combines the advantages of existing methods. CGI is highly parallelizable and, for the test systems considered here, is shown to outperform the other studied equilibrium and nonequilibrium methods. 相似文献
18.
Emmanuel N. Skountzos Florian von Wrochem Vlasis G. Mavrantzas 《Macromolecular theory and simulations》2020,29(3)
All‐atom molecular dynamics simulations are performed to investigate the structural and conformational properties of a regioregular poly(3‐hexylthiophene) (P3HT) crystal in the presence of a gold (Au) substrate terminated with an n‐alkanethiol self‐assembled monolayer (SAM). The employed orientation of the P3HT crystals deposited on the SAM is the edge‐on, since this orientation is believed to be the most energetically favorable and stable, also yielding the highest charge carrier mobility in organic thin‐film transistors. The unit cell of the overall Au/SAM interfacial layer is obtained through detailed ab initio calculations. Systems with a varying number of P3HT stacks on the Au/SAM substrate are studied with an all‐atom force field in order to elucidate the effect of polymer thickness on the structural properties of the system. All final structures are found to be stable and well‐equilibrated. Insights into the P3HT crystal structure are provided for the P3HT layers in direct contact with the SAM, but also for those deeper in the polymer film. According to the simulations, the majority of conformational and packing properties of the P3HT film are practically similar to those of the bulk crystalline P3HT material, implying that its structure remains unaffected by the presence of the underlying Au/SAM substrate. 相似文献
19.
Tijana Boji Milan Sencanski Vladimir Perovic Jelena Milicevic Sanja Glisic 《Molecules (Basel, Switzerland)》2022,27(9)
Alzheimer’s disease (AD), a devastating neurodegenerative disease, is the focus of pharmacological research. One of the targets that attract the most attention for the potential therapy of AD is the serotonin 5HT6 receptor, which is the receptor situated exclusively in CNS on glutamatergic and GABAergic neurons. The neurochemical impact of this receptor supports the hypothesis about its role in cognitive, learning, and memory systems, which are of critical importance for AD. Natural products are a promising source of novel bioactive compounds with potential therapeutic potential as a 5HT6 receptor antagonist in the treatment of AD dementia. The ZINC—natural product database was in silico screened in order to find the candidate antagonists of 5-HT6 receptor against AD. A virtual screening protocol that includes both short-and long-range interactions between interacting molecules was employed. First, the EIIP/AQVN filter was applied for in silico screening of the ZINC database followed by 3D QSAR and molecular docking. Ten best candidate compounds were selected from the ZINC Natural Product database as potential 5HT6 Receptor antagonists and were proposed for further evaluation. The best candidate was evaluated by molecular dynamics simulations and free energy calculations. 相似文献
20.
Bromodomain and extra-terminal domain (BET) subfamily is the most studied subfamily of bromodomain-containing proteins (BCPs) family which can modulate acetylation signal transduction and produce diverse physiological functions. Thus, the BET family can be treated as an alternative strategy for targeting androgen-receptor (AR)-driven cancers. In order to explore the effect of inhibitors binding to BRD4 (the most studied member of BET family), four 150 ns molecular dynamic simulations were performed (free BRD4, Cpd4-BRD4, Cpd9-BRD4 and Cpd19-BRD4). Docking studies showed that Cpd9 and Cpd19 were located at the active pocket, as well as Cpd4. Molecular dynamics (MD) simulations indicated that only Cpd19 binding to BRD4 can induce residue Trp81-Ala89 partly become α-helix during MD simulations. MM-GBSA calculations suggested that Cpd19 had the best binding effect with BRD4 followed by Cpd4 and Cpd9. Computational alanine scanning results indicated that mutations in Phe83 made the greatest effects in Cpd9-BRD4 and Cpd19-BRD4 complexes, showing that Phe83 may play crucial roles in Cpd9 and Cpd19 binding to BRD4. Our results can provide some useful clues for further BCPs family search. 相似文献