首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The reaction of the 2‐(1‐alkylhydrazino)‐6‐chloroquinoxaline 4‐oxides 1a,b with diethyl acetone‐dicarboxylate or 1,3‐cyclohexanedione gave ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐1,5‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylates 5a,b or 6‐alkyl‐10‐chloro‐1‐oxo‐1,2,3,4,6,12‐hexahydroquinoxalino[2,3‐c]cinnolines 7a,b , respectively. Oxidation of compounds 5a,b with nitrous acid afforded the ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐4‐carboxylates 9a,b , whose reaction with base provided the ethyl 2‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)acetates 6a,b , respectively. On the other hand, oxidation of compounds 7a,b with N‐bromosuccinimide/water furnished the 4‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)butyric acids 8a,b , respectively. The reaction of compound 8a with hydroxylamine gave 4‐(7‐chloro‐4‐hydroxyimino‐1‐methyl‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)‐butyric acid 12 .  相似文献   

2.
A series of new 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]pyrimidine derivatives were synthesised. Reaction of 2‐amino‐4,6‐dichloropyrimidine‐5‐carbaldehyde ( 1 ) with ethyl mercaptoacetate, methyl N‐methylglycinate or ethyl glycinate afforded ethyl (2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)thioacetate ( 2a ), methyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)‐N‐methylglycinate ( 2b ) and ethyl N‐(2‐amino‐4‐chloro‐5‐formylpyrimidin‐6‐yl)glycinate ( 2c ), respectively. Compounds 2a,b by treatment with bases cyclised to the corresponding 2‐amino‐4‐chlorothieno‐ and pyrrolo[2,3‐d]pyrimidine‐6‐carboxylates ( 3a,b ). Heating 2,4‐diamino‐6‐chloropyrimidine‐5‐carbaldehyde ( 5 ) with ethyl mercaptoacetate or methyl N‐methylglycinate gave 2,4‐diaminothieno[2,3‐d]‐ and 2,4‐diaminopyrrolo[2,3‐d]‐pyrimidine‐6‐carboxylates ( 6a,b ), whereas compound 5 with ethyl glycinate under the same reaction conditions afforded ethyl N‐(2,4‐diamino‐5‐formylpyrimidin‐6‐yl)glycinate ( 7 ). Treatment of 2,4‐diaminothieno[2,3‐d]pyrimidine‐6‐carboxylic acid ( 8a ) with 4‐methoxy‐, 3,4,5‐trimethoxyanilines or ethyl N‐(4‐aminobenzoyl)‐L‐glutamate in the presence of dicyclohexylcarbodiimide and 1‐hydroxybenzotriazole furnished the corresponding N‐arylamides 9‐11.  相似文献   

3.
The reaction of N‐(3‐carbethoxy‐4,5,6,7‐tetrahydrobenzo[b]thien‐2‐yl)‐N′‐phenylthiourea ( 1 ) with hydrazine hydrate in 1‐butanol afforded a mixture of compounds 2, 3 and 4 . Treatment of 3 and 4 with nitrous acid gave 6 and 8 respectively, while reactions of 3 with acetylacetone gave 7 . Synthesis of tetracyclic compounds 9a‐f and 11 from the reactions of 3 with ethyl orthoformate or appropriate acids, acid chloride, carbon disulphide and/or ethyl chloroformate. Also its reaction with isothiocyanate derivatives gave the corresponding thiosemicarbzides 12a,b which on, refluxing in alcoholic KOH gave the unexpected tetracyclic products 14a,b . Similarly the tetracyclic compounds 16a‐e and 19 were obtained by cyclization of 4 and 18 respectively.  相似文献   

4.
Thermal cyclization reactions of N‐alkyl‐2‐benzylaniline 1a‐d and N‐alkyl‐N′‐phenyl‐o‐phenylenediamine 2a‐b were carried out expecting to get seven‐membered heterocyclic compounds. However, the results show that aside from the formation of the normally expected six‐membered ring products of acridine 5 , anthracene 6 , and phenazine 8 , thermal cyclization of N‐alkyl‐2‐benzylaniline and N‐alkyl‐N′‐phenyl‐o‐phenylenediamine also resulted to the unexpected formation of 2‐phenylindole 3 and 2,3‐diphenylindole 4 , and 2‐phenylbenzimidazole 7 , respectively.  相似文献   

5.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

6.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

7.
N‐t‐Butylacetamidines 1 on heating with methyl vinyl ketone, acrolein or crotonaldehyde gave the 2,3‐dihydropyridine derivatives 4,5 or 6 via N‐alkylation of the acetamidines 1 . Reaction of amidines 1 with phenyl 1‐propenyl ketone, benzalacetone or chalcone gave 3,4‐dihydropyridine derivatives 8, 9 or 10 . These were obtained by C‐alkylation, achieved by Michael addition of the acetamidines 1 as their N,C‐tautomers ene‐1,1‐diamines 1 ′ to α,β‐unsaturated carbonyl compounds, and subsequent cyclodehydration of adducts. Reaction of 1 with ethyl 3‐benzoylacrylate gave 3,4‐dihydropyrrol‐2‐one derivatives 13 .  相似文献   

8.
The reaction of the 6‐substituted 1‐methyl‐4‐quinolone‐3‐carboxylates 10a , 10b with hydrazine hydrate gave the 3‐carbohydrazides 7a , 7b , respectively, whose reaction with 2‐, 3‐, and 4‐pyridinecarbaldehydes afforded the 3‐(N2‐pyridylmethylene)carbohydrazides 8a , 8b , 8c and 9a , 9b , 9c . The Curtius rearrangement of compound 7b provided the N,N′‐bis(4‐quinolon‐3‐yl)urea 14 presumably via the 3‐carboazide 11 and then 3‐isocyanate 12 . Compounds 7a , 8a , and 9a were found to possess antimalarial activity from the in vitro screening data. J. Heterocyclic Chem.,(2011).  相似文献   

9.
In this study, methyl 2‐(quinolin‐8‐yloxy) acetate ( 2 ) obtained by reaction of 8‐hydroxyquinoline ( 1 ) with methyl chloroacetate was condensed with hydrazine hydrate to afford the carbohydrazide ( 3 ). Thio/semicarbazide derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were obtained by treatment of the 3 with substituted phenyl iso/thioisocyanates. The 4a , 4b , 4c , 4d , 4e , 4f , 4g on acidic and basic intramolecular cyclization led to N‐(aryl)‐5‐((quinolin‐8‐yloxy)methyl)‐1,3,4‐oxa/thiadiazol‐2‐amines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) and 4‐aryl‐5‐((quinolin‐8‐yloxy)methyl)‐2H‐1,2,4‐triazole‐3(4H)‐thiones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ), respectively. All the synthesized compounds were characterized by spectroscopic techniques and elemental analyses. The thiosemicarbazide ( 4c ) was also confirmed by X‐ray crystallography.  相似文献   

10.
The synthesis of derivatives of 2,3‐dihydroimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐thione 1,1‐dioxide is reported starting from N‐substituted ethyl 2‐(5‐chloro‐2‐nitrobenzenesulfonamido)‐2‐alkyl‐acetates. Fundamental steps of the synthetic pathway were: i) intramolecular cyclization of N‐substituted 2‐(2‐amino‐5‐chlorobenzenesulfonamido)‐2‐alkylacetic acids in the presence of N‐(3‐dimethyl‐aminopropyl)‐N′‐ethyl carbodiimide hydrochloride‐N,N‐dimethylaminopyridine complex; ii) building of imidazole ring from 2‐alkyl‐8‐chloro‐2,3‐dihydro‐3‐methyl‐1,2,5‐benzothiadiazepin‐4(5H)‐one 1,1‐dioxide to achieve 2‐alkyl‐9‐chloro‐2,3‐dihydro‐3‐methylimidazo[1,5,4‐ef][1,2,5]benzothiadiazepin‐6(4H,7H)‐one 1,1‐dioxide; iii) preparation of thiocarbonyl derivative by treatment with Lawesson's reagent. Introduction of a 3‐methyl‐2‐butenyl chain at position 2 of above imidazobenzothiadiazepinone required protection at the 7 position with thermally removable tert‐butoxycarbonyl moiety, due to the fact that alkylation of unprotected structure proved to be regioselective for the 7 position.  相似文献   

11.
The Bigenelli acid catalyzed condensation of 2‐trifluoromethylbenzaldehyde ( 1 ), urea ( 2 ) and an alkyl acetoacetate ( 3 ) afforded the respective alkyl (Me, Et, i‐Pr, i‐Bu) 6‐methyl‐4‐(2‐trifluoromethylphenyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylate ( 4‐7 ). Subsequent N3‐nitration of the alkyl esters ( 4‐7 ) using Cu(NO3)2 3H2O and Ac2O furnished the target alkyl 6‐methyl‐3‐nitro‐4‐(2‐trifluoromethylphenyl)‐1,2,3,4‐tetrahydro‐2H‐pyrimidine‐2‐one‐5‐carboxylates ( 8‐11 ). The N3‐nitro compounds ( 8‐11 ) were less potent calcium channel antagonists (IC50 values in the 1.9 × 10?7 to 3.9 × 10?6 M range) on guinea pig ileal longitudinal smooth muscle than the reference drug nifedipine (Adalat®, IC50 = 1.4 × 10?8 M). In vitro calcium channel modulation studies on guinea pig left atrium (GPLA) showed that the methyl and ethyl esters ( 8‐9 ) induced a weak‐to‐modest positive inotropic (agonist) effect, and that the inactive isopropyl ( 10 ) and isobutyl ( 11 ) esters did not alter the cardiac contractile force of GPLA.  相似文献   

12.
The synthesis of N′‐methyl‐4‐(pyrrolidin‐1‐yl)picolinohydrazide and N′‐methyl‐pyrimidine‐2‐carbohydrazide derivatives ( 5a and 5b ) was carried out. These compounds were used as starting materials to obtain methyl N′‐methylhydrazinecarbodithioates 6a and 6b , which, on reaction with either triethylamine or hydrazine, gave corresponding 1,3,4‐oxadiazioles 7a and 7b or 1,2,4‐triazoles 9a and 9b with the free NH2 group at the N‐4 position, respectively. Compounds 8a – e , particularly containing cyclic amines at N‐4 of the 1,2,4‐triazole ring, were also obtained. Synthesized compounds were tested in vitro for their activity against Mycobacterium tuberculosis. The structure–activity relationship analysis for obtained compounds was done. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:223–230, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21008  相似文献   

13.
Synthesis of 6‐bromo‐2‐(substituted)‐3‐(1‐phenyl‐ethyl)‐3,4‐dihydro‐1H‐isophosphinoline 2‐chalco‐genides derivatives (6) were synthesized from 2‐[(1‐phenylethylamino)methyl]‐4‐bromophenol ( 1 ) by reaction with aryl/alkyl phosphoro dichloridates ( 2 ) in the presence of triethylamine at 55°C to 60°C to obtained the title compounds ( 6a‐g ). The title compounds ( 6h‐j ), were prepared via intermediate route. Few other title compounds ( 8a‐c ) were accomplished through a two step synthetic route involving 1 with dichlorophenyl phosphine ( 2a ) and dichloroethyl phosphine ( 2a,b ) in the presence of triethylamine in dry toluene under N2 atmosphere to form the corresponding trivalent phosphorus intermediate (7) . In the second step they were further converted to the corresponding chalcogenides 8a‐c by reaction with hydrogen peroxide, sulfur and selenium respectively. They exhibited significant antibacterial, fungal and insecticidal activity.  相似文献   

14.
Fused tetracycles, 6‐alkyl‐3‐alkoxy‐2‐cyano‐4,5,6a,11‐tetraazabenzo[a]fluorene derivatives ( 5a , b , c , d , e , f ), are synthesized from 2‐alkoxy‐5‐(benzimidazol‐2‐ylidene)‐3‐cyano‐6‐imino‐5,6‐dihydro‐pyridines ( 4b , c ), and when refluxed in ethyl orthoacetate or ethyl orthopropionate, the elecrophilic aromatic substitution occurs at the ortho position of the cyanopyridine ring in the fused tetracycles ( 5b , c , e , f ) to afford 6‐alkyl‐3‐alkoxy‐2‐cyano‐1‐ethyl‐4,5,6a,11‐tetraazabenzo[a]fluorenes( 6b , c , e , f ).  相似文献   

15.
Two diverse methodologies describe the first synthesis of suitably protected N‐α,N‐1(τ)‐dialkyl‐Lhistidine derivatives. Synthesis of suitably protected N‐α,N‐1(τ)‐dialkyl‐L‐histidines 7‐9 containing different alkyl groups at the N‐α and N‐1(τ) positions was achieved in four steps starting from L‐histidine methyl ester. Whereas, in the one‐step alternate route N‐α‐Boc‐L‐histidine methyl ester upon direct and simultaneous N‐α and N‐1(τ) alkylation with various alkyl halides in the presence of sodium hydride in DMF easily afforded N‐α,N‐1(τ)‐dialkyl‐L‐histidines 14 containing identical alkyl group at the N‐α and N‐1(τ) positions in high yields. Both procedures allowed facile entry to methyl and other higher alkyl groups at the N‐α‐position of the histidine ring  相似文献   

16.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

17.
Quinolone analogues I‐VI with pyridazino[3,4‐b]quinoxaline ring system were synthesized form the (l‐alkylhydrzino)quinoxalina N‐oxides 1 via oxidation of pyridazino[3,4‐b]quinoxalines 2,3,5,7 , quinoxalino[2,3‐c]cinnolines 4 , and 1,2‐dizepino[3,4‐b]quinoxalines 6 . The biological activities of quinolone analogues IVa (N1‐methyl‐C3‐methyl), Va (N1‐methyl‐C3‐ethyl), and VI (N1‐methyl‐C3‐H) were superior to those of quinolone analogues I (N1‐ethyl‐C3‐carboxyl), 26b (N1‐ethyl‐C3‐carboxylate), and IIIc,d [N1‐alkyl‐C3‐(CH2)3COOC2H5].  相似文献   

18.
Reaction of 2‐acyl‐6‐methylbenzo[b]furan‐3‐acetic acids and their derivatives such as amides and esters with hydrazine does not give expected 1‐alkyl‐5H‐benzofuro[2,3‐e]diazepin‐4‐ones ones but results in 2‐amino‐7‐methyl‐2H‐benzo[4,5]furo[2,3‐c]pyridin‐3‐ones or (3‐R‐6‐methylbenzo[b]furan‐2‐yl)alkyl ketone azines.  相似文献   

19.
Dehydrogenation of ethyl 3‐methyl‐4‐oxo‐4,5,6,7‐tetrahydrobenzofuran‐2‐carboxylate 1 with 2,2′‐azobi‐sisobutyronitrile and N‐bromosuccinimide gave ethyl 4‐hydroxy‐3‐methylbenzofuran‐2‐carboxylate 3 . Reaction of compounds 3–4 with hydrazine hydrate afforded the corresponding hydrazides 5a‐b . The reaction of 5a‐b with aldehydes yielded substituted hydrazones 6a‐l . Compounds 7a‐d were prepared from compounds 6a‐d and bromine in acetic acid. Lead tetraacetate oxidation of compounds 6e‐l afforded substituted oxadiazoles 8e‐l . Selenium dioxide oxidation of 4‐oxo‐4,5,6,7‐tetrahydrobenzofuran semicarbazones 9, 14a and 4‐oxo‐4,5,6,7‐tetrahydrobenzothiophene 14b gave the tricyclic 1,2,3‐selenadiazoles 10, 15a and 15b respectively. Reaction of semicarbazones 9, 14a and 14b with thionyl chloride afforded the corresponding 1,2,3‐thiadiazoles 12, 16a and 16b respectively.  相似文献   

20.
2‐Aryl‐hydrazononitriles 3a , 3b , 3c were prepared by coupling 3‐ethylthio‐5‐cyanomethyl‐4‐phenyl‐1,2,4‐triazole ( 1 ) with diazonium salts 2a , 2b , 2c . Reacting 3a , 3b , 3c with both ethyl bromoacetate ( 4a ) and 4‐bromobenzyl bromide ( 4b ) in DMF, in the presence of K2CO3, at 80 °C for 3–4 h, gave the corresponding 4‐amino‐pyrazoles 6a , 6b , 6c , 6d , 6e , 6f . Diazotization of 6a , 6b , 6c , 6d , 6e , 6f , followed by reaction with NaN3, leads to the formation of 4‐azidopyrazoles 8a , 8b , 8c , 8d , 8e , 8f , a new heterocyclic ring system. Interestingly, fusion of 4‐azidopyrazoles 8d , 8e , 8f at temperature higher than their melting points with 5 °C for 2 min did not give the expected fused pyrazolo[4,3‐c]isoxazoles 9 but furnished instead the novel pyrazolo[4,3‐b]quinolinones 10a , 10b , 10c , in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号