首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Two kinds of novel vinyl monomers having D ‐glucaric moieties leading to a new type of glycopolymeric inhibitors of β‐glucuronidase, Np‐vinylbenzyl‐6‐D ‐glucaramide (6 ) and potassium Np‐vinylbenzyl‐6‐D ‐glucaramid‐1‐ate (8 ), were synthesized by the reaction of D ‐glucaro‐6,3‐lactone (3 ) with p‐vinylbenzylamine (5 ) with no catalyst, and the subsequent treatment of the reaction mixture with acetic anhydride and potassium hydroxide aqueous solution, respectively. The radical copolymerization of 8 with acrylamide in various feed ratios at 60°C in 0.1 N potassium chloride aqueous solution gave water‐soluble copolymers (9 ) composed of a synthetic polymeric main chain and many pendant D ‐glucaric chains. The resulting glycopolymers (9 ) were found to inhibit the activity of β‐glucuronidase strongly through a model reaction with p‐nitrophenyl β‐D ‐glucuronide (10 ) in acetic buffer solution (pH 4.7). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 303–312, 1999  相似文献   

3.
Two kinds of new glycopolymers, (P(VB‐1‐GlcaH‐co‐AAm), 9 ) and (P(VB‐1‐Glco‐co‐AAm), 10 ), were synthesized through the radical copolymerization of styrene derivatives bearing pendant D ‐glucaric and D ‐gluconic moieties, N‐(p‐vinylbenzyl)‐1‐D ‐glucaramide (VB‐1‐GlcaH, 7 ), and N‐(p‐vinylbenzyl)‐D ‐gluconamide (VB‐1‐Glco, 8 ), with acrylamide (AAm). Glycopolymer 9 bearing the pendant glucaric moiety at the first position inhibited the hydrolysis of a model compound for xenobiotics‐β‐glucuronide conjugates, p‐nitrophenyl β‐D ‐glucuronide, uncompetitively, in contrast to the competitive inhibition in the presence of the corresponding isomeric glycopolymer bearing the pendant D ‐glucaric unit at the sixth position (P(VB‐6‐GlcaH‐co‐AAm), 3 ) reported in our previous article. On the other hand, another copolymer 10 bearing the gluconic moiety was found not to inhibit the hydrolysis as well as the corresponding copolymer bearing pendant gulonic unit (P(VB‐6‐Glco‐co‐AAm), 4 ). These results indicate that the hydrolysis is influenced not only by existence of pendant carboxyl units but also by the direction on the linkage of the glyco‐units to the polymer frame. Therefore the configurational position of hydroxy groups in pendant glyco‐units in macromolecular inhibitors may be essential for the interaction with β‐glucuronidase. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4895–4903, 2006  相似文献   

4.
A new styrene derivative having D ‐mannaric moiety, Np‐vinylbenzyl‐D ‐mannaramic acid (VB‐D ‐ManaH, 8 ) was synthesized though the ring‐opening reaction of D ‐mannaro‐1,4:6,3‐dilactone (D ‐MDL) with p‐vinylbenzylamine. VB‐D ‐ManaH was copolymerized with acrylamide (AAm) to give novel polymers having D ‐mannaric moiety in the pendants, P(VB‐D ‐ManaH‐co‐AAm), 10 . The resulting glycomonomer and polymer ( 8 and 10 ) bearing D ‐mannaric pendants were found to inhibit the β‐glucuronidase activity, although the inhibition ability of the corresponding saccharodilactone (D ‐MDL) was known to be low. Additionally, the inhibition ability of P(VB‐D ‐ManaH‐co‐AAm), 10 , was almost the same as that of the glycopolymer having D ‐glucaric pendants, P(VB‐6‐D ‐GlcaH‐co‐AAm), 1 , which was one of the most effective inhibitors for β‐glucuronidase, reported in our previous work. Thus, 10 and 8 may be the first D ‐mannaric strong inhibitors to the β‐glucuronidase activity. The Lineweaver–Burk plot suggested that the inhibition mechanisms of 10 and 8 were more complicated than in the case of the competitive and uncompetitive inhibition of Np‐(vinylbenzyl)‐6‐D ‐glucaramic ( 11 ) and Np‐(vinylbenzyl)‐1‐D ‐glucaramic acids ( 12 ), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2032–2042, 2009  相似文献   

5.
The known glucaro‐1,5‐lactam 8 , its diastereoisomers 9 – 11 , and the tetrahydrotetrazolopyridine‐5‐carboxylates 12 – 14 were synthesised as potential inhibitors of β‐D ‐glucuronidases and α‐L ‐iduronidases. The known 2,3‐di‐O‐benzyl‐4,6‐O‐benzylidene‐D ‐galactose ( 16 ) was transformed into the D ‐galactaro‐ and L ‐altraro‐1,5‐lactams 9 and 11 via the galactono‐1,5‐lactam 21 in twelve steps and in an overall yield of 13 and 2%, respectively. A divergent strategy, starting from the known tartaric anhydride 41 , led to the D ‐glucaro‐1,5‐lactam 8 , D ‐galactaro‐1,5‐lactam 9 , L ‐idaro‐1,5‐lactam 10 , and L ‐altraro‐1,5‐lactam 11 in ten steps and in an overall yield of 4–20%. The anhydride 41 was transformed into the L ‐threuronate 46 . Olefination of 46 to the (E)‐ or (Z)‐alkene 47 or 48 followed by reagent‐ or substrate‐controlled dihydroxylation, lactonisation, azidation, reduction, and deprotection led to the lactams 8 – 11 . The tetrazoles 12 – 14 were prepared in an overall yield of 61–81% from the lactams 54, 28 , and 67 , respectively, by treatment with Tf2O and NaN3, followed by saponification, esterification, and hydrogenolysis. The lactams 8 – 11 and 40 and the tetrazoles 12 – 14 are medium‐to‐strong inhibitors of β‐D ‐glucuronidase from bovine liver. Only the L ‐ido‐configured lactam 10 (Ki = 94 μM ) and the tetrazole 14 (Ki = 1.3 mM ) inhibit human α‐L ‐iduronidase.  相似文献   

6.
We have developed an activatable photosensitizer capable of specifically inducing the death of β‐galactosidase‐expressing cells in response to photoirradiation. By using a selenium‐substituted rhodol scaffold bearing β‐galactoside as a targeting substituent, we designed and synthesized HMDESeR‐βGal, which has a non‐phototoxic spirocyclic structure owing to the presence of the galactoside moiety. However, β‐galactosidase efficiently converted HMDESeR‐βGal into phototoxic HMDESeR, which exists predominantly in the open xanthene form. This structural change resulted in drastic recovery of visible‐wavelength absorption and the ability to generate singlet oxygen (1O2). When HMDESeR‐βGal was applied to larval Drosophila melanogaster wing disks, which express β‐galactosidase only in the posterior region, photoirradiation induced cell death in the β‐galactosidase‐expressing region with high specificity.  相似文献   

7.
The N‐carboxyanhydrides (NCAs) of sarcosine (Sar), D ,L ‐leucine (D ,L ‐Leu), D ,L ‐phenylalanine (D ,L ‐Phe), and L ‐alanine (L ‐Ala) were polymerized in dioxane. Imidazole served as initiator and the NCA/initiator ratio was varied from 1/1 to 40/1. The isolated polypeptides were characterized by 1H NMR spectroscopy, by MALDI‐TOF mass spectrometry, by viscosity measurements, and by SEC measurements in the case of poly(sarcosine). Cyclic oligopeptides were found in all reaction products and in the case of polySar, poly(D ,L ‐Leu), and poly(D ,L ‐Phe) the cycles were the main products. In the case of poly(L ‐Ala), rapid precipitation of β‐sheet lamellaes prevented efficient cyclizations and stabilized imidazolide endgroups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5690–5698, 2005  相似文献   

8.
Modification of the Lipid A phosphates by positively charged appendages is a part of the survival strategy of numerous opportunistic Gram‐negative bacteria. The phosphate groups of the cystic fibrosis adapted Burkholderia Lipid A are abundantly esterified by 4‐amino‐4‐deoxy‐β‐L ‐arabinose (β‐L ‐Ara4N), which imposes resistance to antibiotic treatment and contributes to bacterial virulence. To establish structural features accounting for the unique pro‐inflammatory activity of Burkholderia LPS we have synthesised Lipid A substituted by β‐L ‐Ara4N at the anomeric phosphate and its Ara4N‐free counterpart. The double glycosyl phosphodiester was assembled by triazolyl‐tris‐(pyrrolidinyl)phosphonium‐assisted coupling of the β‐L ‐Ara4N H‐phosphonate to α‐lactol of β(1→6) diglucosamine, pentaacylated with (R)‐(3)‐acyloxyacyl‐ and Alloc‐protected (R)‐(3)‐hydroxyacyl residues. The intermediate 1,1′‐glycosyl‐H‐phosphonate diester was oxidised in anhydrous conditions to provide, after total deprotection, β‐L ‐Ara4N‐substituted Burkholderia Lipid A. The β‐L ‐Ara4N modification significantly enhanced the pro‐inflammatory innate immune signaling of otherwise non‐endotoxic Burkholderia Lipid A.  相似文献   

9.
A gene of α‐L ‐arabinofuranosidase (Abf) from Trichoderma koningii G‐39 was successfully expressed in Pichia pastoris. The recombinant enzyme was purified to > 90% homogeneity by a cation‐exchanged chromatography. The purified enzyme exhibits both α‐L ‐arabinofuranosidase and β‐D ‐xylosidase (Xyl) activities with p‐nitrophenyl‐α‐L ‐arabionfuranoside (pNPAF) and 2,4‐dinitrophenyl‐β‐D ‐xylopyanoside (2,4‐DNPX) as substrate, respectively. The stability and the catalytic feature of the bifunctional enzyme were characterized. The enzyme was stable for at least 2 h at pH values between 2 and 8.3 at room temperature when assayed for Abf and Xyl activities. Enzyme activity decreased dramatically when the pH exceeded 9.5 or dropped below 1.5. The enzyme lost 35% of Abf activity after incubation at 55 °C for 2 h, but retained 95% of Xyl activity, with 2,4‐DNXP as substrate, under the same conditions. Further investigation of the active site topology of both enzymatic functions was performed with the inhibition study of enzyme activities. The results revealed that methyl‐α‐L ‐arabinofuranoside inhibition is noncompetitive towards 2,4‐DNPX as substrate but competitive towards pNPAF. Based on the thermal stability and the inhibition studies, we suggest that the enzymatic reactions of Abf and Xyl are performed at distinct catalytic sites. The recombinant enzyme possesses both the retaining transarabinofuranosyl and transxylopyranosyl activities, indicating both enzymatic reactions proceed through a two‐step, double displacement mechanism.  相似文献   

10.
Our lab has developed a new series of self‐immolative MR agents for the rapid detection of enzyme activity in mouse models expressing β‐galactosidase (β‐gal). We investigated two molecular architectures to create agents that detect β‐gal activity by modulating the coordination of water to GdIII. The first is an intermolecular approach, wherein we designed several structural isomers to maximize coordination of endogenous carbonate ions. The second involves an intramolecular mechanism for q modulation. We incorporated a pendant coordinating carboxylate ligand with a 2, 4, 6, or 8 carbon linker to saturate ligand coordination to the GdIII ion. This renders the agent ineffective. We show that one agent in particular (6‐C pendant carboxylate) is an extremely effective MR reporter for the detection of enzyme activity in a mouse model expressing β‐gal.  相似文献   

11.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

12.
40 years ago spectroscopy, derivatization, and degradation revealed the structures of α‐lipomycin and its aglycon β‐lipomycin except for the configurations of their side‐chain stereocenters. We synthesized all relevant β‐lipomycin candidates: the (12R,13S) isomer has the same specific rotational value as the natural product. By the same criterion the (12R,13S)‐configured D ‐digitoxide is identical to α‐lipomycin. We double‐checked our assignments by degrading α‐ and β‐lipomycin to the diesters 33 and 34 and proving their 3D structures synthetically.  相似文献   

13.
14.
The β‐pyranose form, (III), of 3‐deoxy‐d ‐ribo‐hexose (3‐deoxy‐d ‐glucose), C6H12O5, crystallizes from water at 298 K in a slightly distorted 4C1 chair conformation. Structural analyses of (III), β‐d ‐glucopyranose, (IV), and 2‐deoxy‐β‐d ‐arabino‐hexopyranose (2‐deoxy‐β‐d ‐glucopyranose), (V), show significantly different C—O bond torsions involving the anomeric carbon, with the H—C—O—H torsion angle approaching an eclipsed conformation in (III) (−10.9°) compared with 32.8 and 32.5° in (IV) and (V), respectively. Ring carbon deoxygenation significantly affects the endo‐ and exocyclic C—C and C—O bond lengths throughout the pyranose ring, with longer bonds generally observed in the monodeoxygenated species (III) and (V) compared with (IV). These structural changes are attributed to differences in exocyclic C—O bond conformations and/or hydrogen‐bonding patterns superimposed on the direct (intrinsic) effect of monodeoxygenation. The exocyclic hydroxymethyl conformation in (III) (gt) differs from that observed in (IV) and (V) (gg).  相似文献   

15.
Chiral discrimination of seven enantiomeric pairs of β‐3‐homo‐amino acids was studied by using the kinetic method and trimeric metal‐bound complexes, with natural and unnatural α‐amino acids as chiral reference compounds and divalent metal ions (Cu2+ and Ni2+) as the center ions. The β‐3‐homo‐amino acids were selected for this study because, first of all, chiral discrimination of β‐amino acids has not been extensively studied by mass spectrometry. Moreover, these β‐3‐homo‐amino acids studied have different aromatic side chains. Thus, the emphasis was to study the effect of the side chain (electron density of the phenyl ring, as well as the difference between phenyl and benzyl side chains) for the chiral discrimination. The results showed that by the proper choice of a metal ion and a chiral reference compound, all seven enantiomeric pairs of β‐3‐homo‐amino acids could be differentiated. Moreover, it was noted that the β‐3‐homo‐amino acids with benzyl side chains provided higher enantioselectivity than the corresponding phenyl ones. However, increasing or decreasing the electron density of the aromatic ring by different substituents in both the phenyl and benzyl side chains had practically no role for chiral discrimination of β‐3‐homo‐amino acids studied. When copper was used as the central metal, the phenyl side chain containing reference molecules (S)‐2‐amino‐2‐phenylacetic acid (L ‐Phg) and (S)‐2‐amino‐2‐(4‐hydroxyphenyl)‐acetic acid (L ‐4′‐OHPhg) gave rise to an additional copper‐reduced dimeric fragment ion, [CuI(ref)(A)]+. The inclusion of this ion improved noticeably the enantioselectivity values obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Two bioluminogenic caged coelenterazine derivatives (bGalCoel and bGalNoCoel) were designed and synthesized to detect β‐galactosidase activity and expression by means of bioluminescence imaging. Our approach addresses the instability of coelenterazine by introducing β‐galactose caging groups to block the auto‐oxidation of coelenterazine. Both probes contain β‐galactosidase cleavable caging groups at the carbonyl group of the imidazo–pyrazinone moiety. One of the probes in particular, bGalNoCoel, displayed a fast cleavage profile, high stability, and high specificity for β‐galactosidase over other glycoside hydrolases. bGalN‐oCoel could detect β‐galactosidase activity in living HEK‐293T cell cultures that expressed a mutant Gaussia luciferase. It was determined that coelenterazine readily diffuses in and out of cells after uncaging by β‐galactosidase. We showed that this new caged coelenterazine derivative, bGalNoCoel, could function as a dual‐enzyme substrate and detect enzyme activity across two separate cell populations.  相似文献   

17.
18.
Two new lanostane‐type nonsulfated pentasaccharide triterpene glycosides, 17‐dehydroxyholothurinoside A ( 1 ) and griseaside A ( 2 ), were isolated from the sea cucumber Holothuria grisea. Their structures were elucidated by spectroscopic methods, including 2D‐NMR and MS experiments, as well as chemical evidence. Compounds 1 and 2 possess the same pentasaccharide moieties but differ slightly in their side chains of the holostane‐type triterpene aglycone. The structures of the two new glycosides were established as (3β,12α)‐22,25‐epoxy‐3‐{(Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[O‐3‐O‐methyl‐β‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐6‐deoxy‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐xylopyranosyl)oxy}‐12,20‐dihydroxylanost‐9(11)‐en‐18‐oic acid γ‐lactone ( 1 ) and (3β,12α)‐3‐{(Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[O‐3‐O‐methyl‐β‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐6‐deoxy‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐xylopyranosyl)oxy}‐12,20,22‐trihydroxylanost‐9(11)‐en‐18‐oic acid γ‐lactone ( 2 ). The 17‐dehydroxyholothurinoside A ( 1 ) and griseaside A ( 2 ) exhibited significant cytotoxicity against HL‐60, BEL‐7402, Molt‐4, and A‐549 cancer cell lines.  相似文献   

19.
The efficient scalable syntheses of 2‐acetamido‐1,2‐dideoxy‐D ‐galacto‐nojirimycin (DGJNAc) and 2‐acetamido‐1,2‐dideoxy‐D ‐gluco‐nojirimycin (DNJNAc) from D ‐glucuronolactone, as well as of their enantiomers from L ‐glucuronolactone, are reported. The evaluation of both enantiomers of DNJNAc and DGJNAc, along with their N‐alkyl derivatives, as glycosidase inhibitors showed that DGJNAc and its N‐alkyl derivatives were all inhibitors of α‐GalNAcase but that none of the epimeric DNJNAc derivatives inhibited this enzyme. In contrast, both DGJNAc and DNJNAc, as well as their alkyl derivatives, were potent inhibitors of β‐GlcNAcases and β‐GalNAcases. Neither of the L ‐enantiomers showed any significant inhibition of any of the enzymes tested. Correlation of the in vitro inhibition with the cellular data, by using a free oligosaccharide analysis of the lysosomal enzyme inhibition, revealed the following structure–property relationship: hydrophobic side‐chains preferentially promoted the intracellular access of iminosugars to those inhibitors with more‐hydrophilic side‐chain characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号