首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mandal SK 《Talanta》1979,26(2):133-134
Vanadium(III) solutions can be used in direct titrations of iron(III), copper(II), thallium(III), molybdenum(VI), uranium(VI), vanadium(V), chromium(VI) and manganese(VII) in milligram amounts. The titrations are done at 70-80 degrees for iron(III), copper(II), thallium(III), molybdenum(VI) and at room temperature for vanadium(V), chromium(VI) and manganese(VII). Uranium(VI) is titrated at 70-80 degrees in presence of iron(II). The vanadium(III) solution is prepared by reduction of vanadium(V) to vanadium(IV) with sulphur dioxide, followed by addition of phosphoric acid and reduction with iodide, and is reasonably stable.  相似文献   

2.
Yatirajam V  Ram J 《Talanta》1974,21(6):439-443
A simple and selective extraction of molybdenum is described. Tungsten is masked with tartaric acid and molybdenum(VI) is reduced in 2M hydrochloric acid by boiling with hydrazine sulphate. Iron, copper and vanadium are then masked with ascorbic acid, thiourea and potassium hydrogen fluoride respectively. The molybdenum(V) is extracted as its xanthate complex into chloroform, from 1M hydrochloric acid that is 0.4M potassium ethyl xanthate. The complex is decomposed by excess of liquid bromine, and the molybdenum is stripped into alkaline hydrogen peroxide solution. The molybdenum is then determined by standard methods. Large amounts of Cu(II), Mn(II), Fe(III), Ti(IV), Zr, Ce(IV), V(V), Nb, Cr(VI), W(VI), U(VI), Re(VII) and Os(VIII) do not interfere. Several synthetic samples and ferromolybdenum have been rapidly and satisfactorily analysed by the method.  相似文献   

3.
Vernon F  Khorassani JH 《Talanta》1978,25(7):410-412
Solvent extraction with hydroxamic acids has been investigated. with comparison of aliphatic and aromatic reagents for the extraction of iron, copper, cobalt and nickel. Caprylohydroxamic acid has been evaluated for use in extraction systems for titanium, vanadium, chromium, molybdenum and uranium, both in terms of acidity of aqueous phase and oxidation state of the metal. It has been established that caprylohydroxamic acid in 1-hexanol is a suitable extractant for the removal of titanium(IV), vanadium(V), chromium(VI), molybdenum(VI) and uranium(VI) from 6M hydrochloric acid.  相似文献   

4.
Summary Separation of bismuth(III) from iron(III), molybdenum(VI), vanadium(V), chromium(VI), titanium(IV), antimony(III), lead(II), beryllium(II), uranium(VI), hafnium(IV), indium(III) and zirconium (IV) is achieved by solvent extraction with high molecular weight amines from sodium succinate solution adjusted to suitable pH. Bismuth(III) is stripped from the organic phase and determined spectrophotometrically. The method is shown to be applicable to bismuth alloys.
Extraktion und Trennung von Wismut(III) aus Stahl und wismuthältigen Legierungen
Zusammenfassung Wismut(III) läßt sich von Fe(III), Mo(VI), V(V), Cr(VI), Ti(IV), Sb(III), Pb(II), Be(II), U(VI), Hf(IV), In(III) und Zr(IV) durch Extraktion mit hochmolekularen Aminen aus Natriumsuccinat bei geeignetem pH trennen. Bi(III) wird dann von der organischen Phase getrennt und spektralphotometrisch bestimmt. Das Verfahren eignet sich für Wismutlegierungen.
  相似文献   

5.
Further work on the polarographic reduction of molybdenum(VI), niobium(V) and titanium(IV) in base electrolytes containing organic acids is reported. A base electrolyte of 0.5 M citric acid-0.025 M sulphuric acid-0.05 M thorium nitrate proved suitable for the determination of molybdenum and titanium in the presence of niobium, tantalum, tungsten and zirconium. A direct polarographic method using this base electrolyte is described for the determination of molybdenum in a niobium base alloy.  相似文献   

6.
Summary A new colour reaction for the detection of cerram(IV) which can be carried out both in a test tube and on a spot plate has been described. The test solution is treated with methylene blue in nitric acid solution (11) to form a rose-red colour. This simple procedure has an advantage over the existing tests in that it is applicable in the presence of oxidising agents like chromium(VI), vanadium(V), nitrate, perchlorate and of coloured ions like copper(II), cobalt(II), nickel(II), chromium(III), iron(III), vanadium(IV), uranium(VI).
Zusammenfassung Eine neue, sowohl in der Eprouvette wie auf der Tüpfelplatte ausführbare Farbreaktion zum Nachweis von Cer(IV) wurde angegeben. Die Probelösung wird mit salpetersaurer Methylenblaulösung behandelt und gibt eine rosarote Färbung. Die Reaktion hat gegenüber bekannten Tests den Vorteil, in Gegenwart von Oxydationsmitteln wie Cr(VI), V(V), NO3 , ClO4 bzw. in Anwesenheit gefärbter Ionen wie Cu(II), Co(II), Ni(II), Cr(III), Fe(III), V(IV) oder U(VI) anwendbar zu sein.
  相似文献   

7.
Summary Separation of uranium(VI) from iron(III), molybdenum(VI), vanadium (V), bismuth(III), zirconium(IV) and thorium(IV) is achieved by liquid-liquid extraction with 4-methyl-3-pentene-2-one (mesityl oxide; MeO) from sodium salicylate media (0.1M, pH 6.0). The extracted species is UO2(HO·C6H4COO)2·2MeO. A procedure for separating 50g of uranium from mg amounts of the other metals is described.
Flüssig-flüssig-Extraktion und Trennung von Uran(VI)
Zusammenfassung Die Trennung des U(VI) von Fe(III), Mo(VI), V(V), Bi(III), Zr(IV) und Th(IV) läßt sich durch Flüssig-flüssig-Extraktion mit 4-Methyl-3-penten-2-on] (Mesityloxid, MeO) aus 0,1M Natriumsalicylat bei pH 6,0 durchführen. Die extrahierte Verbindung ist UO2(HO·C6H4COO)2·2MeO. Ein Verfahren zur Abtrennung von 50g Uran von Milligrammengen der anderen Metalle wurde beschrieben.
  相似文献   

8.
The polarographic behavior of metal ions in perchlorate media containing gallic acid is described. Tungsten(VI) forms a complex with gallic acid which yields a single wave in these media, useful in the polarographic determination of tungsten. Evidence for complexation of chromium(III), copper(II), iron(III), molybdenum(VI), uranium(VI), vanadium(V), tungsten(VI), praseodymium(III), samarium(III), neodymium(III) and gadolinium(III) is obtained and the behavior of these metal ions is summarized.  相似文献   

9.
Reduction mechanisms of polarographic reduction waves of Mo(VI) in 0.1–5 M sulfuric acid solutions are described. Three reduction waves are observed when the concentration of sulfuric acid is >3 M. From the results of coulometry and the catalytic behavior of Mo(V), it is concluded that three different reduction mechanisms of Mo(VI) to Mo(V) are present and that two separate reductions of Mo(VI) to Mo(V) and of Mo(V) to Mo(III) are involved at the potential of the third wave. The presence of three reduction mechanisms of Mo(VI) to Mo(V) in sulfuric acid α 3 M seems to indicate the existence of three different chemical species of Mo(VI). Two of these three species are different from the present in 0.1 M sulfuric acid.  相似文献   

10.
Yatirajam V  Ram J 《Talanta》1974,21(12):1308-1311
A simple and rapid spectrophotometric determination of molybdenum is described. The molybdenum thiosulphate complex is extracted into isoamyl alcohol from 1·0–1·5M hydrochloric acid containing 36–40 mg of Na2S2O3·5H2O per ml. The absorbance at λmax = 475 nm obeys Beer's law over the range 0–32 μg of Mo per ml of solvent phase. Up to 5 mg/ml of Ti(IV), V(V), Cr(VI), Fe(III), Co(II), Ni(II), U(VI), W(VI), Sb(III), 1 mg/ml of Cu(II), Sn(II), Bi(V) and 10 μg/ml of Pt(IV) and Pd(II) do not interfere. Large amounts of complexing agents interfere. The method has been applied to analysis of synthetic and industrial samples.  相似文献   

11.
Kagaya S  Araki Y  Hirai N  Hasegawa K 《Talanta》2005,67(1):90-97
The coprecipitation behavior of 44 elements (47 ions because of chromium(III,VI), arsenic(III,V), and antimony(III,V)) with yttrium phosphate was investigated at various pHs. Yttrium phosphate could quantitatively coprecipitate iron(III), lead, bismuth, and indium over a wide pH range; however, 18 ions, including alkali metals and oxo anions, such as vanadium(V), chromium(VI), molybdenum(VI), tungsten(VI), germanium(IV), arsenic(III,V), selenium(IV), and tellurium(VI), were scarcely collected. In addition, 19 ions, including cobalt, nickel, and copper(II), were hardly coprecipitated at pHs below about 3. Based on these results, the separation of iron(III), lead, and bismuth from cobalt, nickel, and copper(II) matrices was investigated. Iron(III), lead, and bismuth ranging from 0.5 to 25 μg could be separated effectively from a solution containing 0.5 g of cobalt, nickel, or copper at pH 3.0. The separated iron(III), lead, and bismuth could be determined by inductively coupled plasma atomic emission spectrometry using internal standardization. The detection limits (3σ, n = 7) of iron(III), lead, and bismuth were 0.008, 0.137, and 0.073 μg, respectively. The proposed method was applied to the analyses of metals and chlorides of cobalt, nickel, and copper.  相似文献   

12.
The application of molybdenum(III) as reducing agent in flow injection analysis is described. Molybdenum(III), which is unstable to oxidation by air, is generated in-line from the stable molybdenum(VI) by means of a Jones reductor column. With spectrophotometric detection, iodate, uranium(VI), and vanadium(V) and nitrite can be determined in the concentration range 5 x 10?5 x 10?3 M at an injection rate of 3 min?1. Amperometric detection of nitrite is also described.  相似文献   

13.
The effect of pH on the percent extraction of vanadium(V), iron(II), cobalt(II), nickel(II), copper(II), molybdenum(VI), tungsten(VI) and uranium(VI) by -benzoinoxime in different solvents has been studied. The maximum recovery is not appreciably affected by the nature of the solvent, but occurs at different pH values for different metals. The pH corresponding to maximum extraction increases with increasing hydrolysis pK of the species in aqueous solution, and decreases with increasing stability constant of the complexes formed. Alpha-benzoinoxime allows the separation of these metal ions into three groups: V(V), Mo(VI) and W(VI) are extracted at pH=2, U(VI) at pH=5, Fe(II), Cu(II), Co(II) and Ni(II) at around pH=10.  相似文献   

14.
Adam J  Pribil R 《Talanta》1973,20(12):1344-1347
The method described is based on the extraction of uranium with a chloroform solution of phenylacetic acid from slightly acidic solution containing nitrilotriacetic acid, which masks all interfering metals. After stripping into very dilute hydrochloric acid, uranium is reduced with ascorbic acid and determined complexometrically. The method permits reliable determination of uranium in the presence of all quadri-, ter- and bivalent metals investigated, molybdenum(VI), tungsten(VI), and vanadium(V).  相似文献   

15.
A sensitive spectrophotometric method has been developed for the determination of uranium. The uranium(IV)-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 1.5–3.0 M hydrochloric acid solution. Maximal absorbance occurs at 673 nm and Beer's law is obeyed over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.1·104 1 mole?1 cm?1. Uranium can be determined in the presence of fluoride. sulfate and phosphate. Nitrate ion and elements (chromium, copper, iron) which affect the reduction of uranium(VI) or stability of uranium(IV) interfere.  相似文献   

16.
The polarographic behavior of the titanium(IV)-N-benzoyl-N-phenyl-hydroxylamine (BPHA) system in acidic medium and in water-ethanol mixtures has been studied. In (1+3) water-ethanol containing 2 M sulfuric acid and 0.05 M BPHA, titanium(IV) gives a single kinetically controlled wave. Titanium(IV) can be determined at concentrations as low as 5·10-6M, in the presence of Fe(III), Cu(II), V(V), etc., but Cd(II), Sn(II and IV), As(V), U(VI) and Mo(VI) interfere.  相似文献   

17.
Summary In continuation of our previous work in which salicylic acid was reported to give a very sensitive and an almost specific colour reaction with vanadium(V), we have now found that vanadium(V) reacts with resorcinol in 20 N sulphuric or phosphoric acid solution to give a blue coloured product, which gives a vivid red fluorescence under filtered ultraviolet light. A sensitive test for vanadium(V) has now been developed making use of this red fluorescence or of the bright blue colour. Dichromate gives a somewhat less sensitive violet colour with the resorcinol reagent under the same conditions, but the product does not fluoresce. Manganese(VII), cerium(IV), iron(III), titanium(IV), uranium(VI), molybdenum(VI) and tungsten(VI) do not interfere with the colour reaction or the fluorescence test for vanadium(V).  相似文献   

18.
Chatterjee GP  Ray HN  Biswas K 《Talanta》1966,13(10):1470-1472
A new gravimetric method for the determination of cobalt is described, based on precipitation from acidic solution with a reagent prepared by heating alpha-nitroso-beta-naphthol in a mixture of glacial acetic acid, hydrogen peroxide and syrupy phosphoric acid. The cobalt is weighed, after ignition of the precipitate, as Co(3)O(4). Iron(III), copper, chromium(III), vanadium(V), tungsten(VI), aluminium, molybdenum, nickel, titanium, zirconium, uranium(VI) and cerium do not interfere.  相似文献   

19.
Kataoka M  Nishimura K  Kambara T 《Talanta》1983,30(12):941-944
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 μM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.  相似文献   

20.
N-Benzoylphenylhydroxylamine is employed as a precipitant for the determination of molybdenum (VI). The precipitate can be weighed either directly or as molybdenum trioxide after ignition. Molybdenum can be determined in the presence of appreciable amounts of iron(III), cobalt(II), copper(II), chromium(VI) and vanadium (V).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号