首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of N-benzoyl-N-phenylhydroxylamine for the separation of niobium and tantalum, allows a satisfactory estimation of niobium from a tartrate solution at an acidity of 2.0N. The pH range for complete precipitation can be extended to 6.5. For tantalum precipitation, the pH of the solution should be below 1.5 and the acidity may even be above 2.0N. At pH 3.5–6.5, niobium is completely precipitated and tantalum remains in solution; the latter is precipitated by lowering the pH. Niobium and tantalum in ratios of 1:16 to 100:1 can be separated by a single precipitation, in the case of a ratio of 1:100 precipitation must be carried out twice. Titanium, zirconium, vanadate and molybdate interfere with the determination of niobium though other ions have no effect in the presence of complexone III and tartaric acid. The precipitates are granular and easy to filter and wash. The time taken for a complete analysis is much less than that of other methods  相似文献   

2.
A procedure is presented for the determination of zirconium in the presence of niobium or tantalum. The bulk of the niobium or tantalum is first removed by extracting with hexone from a 10M hyclrofluoric acid, 6M sulphuric acid solution of the sample. The zirconium is then. separated from any unextractcd earth, acid element by precipitation with ammonium hydroxide followed by the addition of hydrogen peroxide. Under these conditions, both the niobium and tantalum form soluble peroxy complexes whereas the zirconium is completely precipitated from solution. After the separation of the precipitate by filtration, it is re-dissolved in hydrochloric acid and the zirconium concentration is finally determined by titration with ethylenediaminetetraacetic acid.  相似文献   

3.
R. Dams  J. Hoste 《Talanta》1964,11(12):1613-1615
An analysis of complex tantalocolumbites has been carried out by precipitation from homogeneous solutions. A homogeneous precipitation of tungsten, titanium, tantalum and niobium by thermal decomposition of the soluble peroxytungstates, described in previous papers, is used. Corrections for incomplete precipitation and coprecipitation phenomena are applied on the basis of the experimentally found values. Silicon and tin are separated by volatilisation as fluoride and iodide, respectively. Iron is extracted by means of isopropyl ether and the rare earth metals are precipitated homogeneously from an oxalate solution. Manganese is precipitated as the ammonium phosphate. The results are in good agreement with an independent method, the standard deviations being within 1 % for the major constituents.  相似文献   

4.
A direct gravimetric method for the determination of titanium with a new reagent, 1-(o-carboxyphenyl)-3-hydroxy-3-phenyltriazene, is proposed. The titanium is precipitated at the pH range 2.0–5.0 and weighed as TiO(C13H10N3O3)2 after drying at 115–120°. In the presence of EDTA, only niobium and tantalum interfere.  相似文献   

5.
Phenylarsonic acid permits satisfactory separation of niobium and tantalum and estimation of tantalum from an oxalate solution containing sulphuric acid up to pH 5.8. For complete precipitation of niobium the pH should exceed 4.8. In mixtures, tantalum is precipitated below pH 3.0 and niobium is then precipitated above pH 5.0. When the oxalate concentration is high, recovery of niobium with cupferron is recommended. When the ratio of Nb2O5, to Ta2O5 exceeds 2:1, reprecipitation of tantalum is necessary. The effect of interfering ions is studied.  相似文献   

6.
Fluoride and oxofluoride salts of niobium, tantalum, and titanium were isolated. They precipitated from aqueous solutions and upon washing of organic extracts with aqueous solutions of ammonium, potassium, and sodium salts. The compositions of the isolated compounds were studied. Different compositions were established for the niobium salts that precipitated upon the dissolution of unwashed niobium hydroxide in hydrofluoric acid under the atmospheric pressure, in an autoclave, and upon addition of sodium, potassium, and ammonium salts to purely fluoride solutions of niobium, as well as for the tantalum ammonium and sodium salts isolated from aqueous and organic solutions. The data obtained can be used for the synthesis of niobium, tantalum, and titanium complex fluoride salts with various compositions.  相似文献   

7.
In the recommended procedure the zirconium is first precipitated from solution as the insoluble barium fluozirconate. After separation, the precipitate is dissolved in a mixture of nitric and boric acids and the zirconium is then precipitated as its hydroxide. This precipitate is separated, dissolved in hydrochloric acid and this solution is evaporated to fumes of perchloric acid to remove completely fluoride ions. The zirconium content is then determined volumetrically by adding a slight excess of a standard solution of ethylenediaminetetra-acetic acid and back titrating with a standard iron solution at pH 2.3 using potassium benzohydroxamate as indicator and the photometric technique for end-point detection. This method is applicable to the determination of milligram amounts of zirconium in fluoride-containing nitric or hydrochloric acid solutions provided that the concentration of these acids is below 3N. It is also suitable for the determination of zirconium in the presence of any of the following elements - uranium, titanium, niobium, tantalum, molybdenum, tungsten, lead, iron, copper and tin.  相似文献   

8.
Germanium is quantitatively precipitated by tannin from oxalate solution at 0.07 N acidity, the white precipitate settles quickly, and is easily filtered and washed. Clean separations are effected in one precipitation from vanadium, ferric iron, and elements of Tannin Group B. Germanium is shown to be a member of Group A, being precipitated at an acidity below that required for tin and tantalum but above that required for titanium.Davies and Morgan's precipitation procedure in acid sulphate solution was tested. The germanium precipitate thus obtained is not quite so tractable as that produced in oxalate solution, and a separation of titanium from germanium by their method could not be effected.  相似文献   

9.
A detailed study of the benzoylphenylhydroxylamine (BPHA)-chloroform-hydrochloric acid solvent extraction system with 52 elements is described with emphasis placed on extraction of the easily hydrolyzed transition metals from strong hydrochloric acid. From this study, a separation procedure for hafnium, niobium, tantalum, titanium, vanadium, and zirconium from uranium was developed, and procedures are given for the microanalysis of niobium and zirconium in uranium. Niobium and zirconium are separated from uranium by extraction into BPHA-chloroform from 10-N HCl.The separated elements are then measured colorimetrically as the niobium-4-(2-pyridylazo)resorcinol and zirconium-arsenazo III complexes. The limit of detection is 1 μg/g U.  相似文献   

10.
An attempt to separate niobium and tantalum by cupfcrron was only moderately successful at pH 4.5 to 5.5 in the presence of a magnesia mixture as a coagulating agent. A more satisfactory separation of niobium and tantalum from each other, tried out up to ratios of 30:1 and 1.30, is effected with Sn+2 or Sn+4 as a co-precipitating agent under the conditions described niobium can be separated, in the presence of complexone III, from almost all the ions except U, Be, Ti and PO4-3. Iron and other tervalent elements, when present in 100 fold excess with respect to niobium, require double precipitation The method gives highly satisfactory results when applied to the analysis of niobium in niobium-molybdenum stainless steel.The use of titanium as a co-precipitant is less successful than that of tin  相似文献   

11.
Experimental work on tantalum-titanium alloys has been handicapped by the lack of accurate methods for the determination of the tantalum. In this paper a colorimetric procedure is proposed for the determination. The tantalum is separated completely from the titanium by two tannin precipitations with an intervening digestion with tannin. The tannin precipitate is ignited, fused with potassium bisulfate and the melt taken up with ammonium oxalate solution. Pyrogallol is then added and the intensity of the yellow color is measured. A study was made of the tantalum pyrogallol color to obtain optimum conditions. Elements that would be found in the usual tantalum-titanium alloys do not interfere with the method. More than 0.0025 gram of niobium interferes by cauaing occlusion of titanium by the tannin precipitate. This causes high results for tantalum, since titanium reacts with pyrogallol to produce a yellow color. The presence of more than 0.0050 gram of tungsten causes high results for tantalum because tungsten is partially precipitated by the tannin and reacts with pyrogallol to produce a yellow color. The proposed method is recommended for tantalum-titanium alloys containing 0.05 to 5 percent, tantalum.  相似文献   

12.
A method is described for separating .and determining niobium and tantalum in mixtures of the two. A solution of the two elements in 3M hydrochloric.0.1M hydrofluoric acid is put on a column of Deacidite FF, the niobium is rapidly eluted with 3M hydrochloric.0.1M hydrofluoric acid and the tantalum is recovered by elution with 4M ammonium chloride-M ammonium fluoride. A complete separation is obtained and the two elements are recovered as their oxides after precipitation. The effecth of some other elements have been examined.  相似文献   

13.
There is need for a method for the determination of niobium in titanium alloys, since niobium-titanium alloys are becoming increasingly important. The determination of niobium in this type of alloy is an extremely difficult matter. Many approaches were tried before the problem was solved. In the method proposed in this paper the sample is dissolved in a mixture of hydrofluoric and nitric acids, the solution evaporated to a small volume, and boric acid added. Two tannic acid separations are then made to separate the niobium from the bulk of the titanium. The niobium, is determined colorimetrically by the thiocyanate method using a water-acetone medium. A study was made of the possible interference of elements that might be present in titanium alloys. It was found that the presence of tantalum causes two opposing tendencies. Tantalum can cause high results for niobium because it forms a complex with thiocyanate which is visually colorless but shows some absorption. Tantalum can cause low results for niobium by hindering the development of the niobium color. The resultant effect of the tantalum depends upon the amount of tantalum present, the amount of niobium present and the ratio of tantalum to niobium. The presence of more than one per cent. tungsten can lead to high results for niobium. Other elements that might be present in titanium alloys do not interfere with the method. The procedure is designed for titanium alloys containing 0.05 to 10 per cent. niobium. The method is reasonably rapid. Six determinations can be finished in two days. The method should be applicable to many other materials besides titanium alloys.  相似文献   

14.
A procedure for the analysis of alloys of titanium, niobium and tantalum is described. After dissolution the metals are separated by ion exchange in hydrochloric-hydrofluoric acid media. Finally the metals are determined spectrophotometrically,  相似文献   

15.
Savariar CP  Joseph J 《Talanta》1970,17(1):45-50
N-Acetylsalicyloyl-N-phenylhydroxylamme is proposed for the separation of niobium(V) and tantalum(V) and their gravimetric determination. Niobium is precipitated at pH 5.5-6.5 by the reagent and the complex is weighed directly. Tantalum is precipitated from 1-2M hydrochloric acid solutions and the complex is ignited to tantalum pentoxide. The method is fairly selective. In the presence of thiocyanate the reagent forms an extractable complex with niobium. The reaction forms the basis of a selective and sensitive spectrophotometric determination of niobium.  相似文献   

16.
Salicylhydroxamic acid can be used for the separation of zirconium from niobium above pH 2 5 in presence of hydrogen peroxide. Niobium can be precipitated from the filtrate with N-benzoyl-N-phenylhydroxylamine.  相似文献   

17.
Parameters for the preparation of concentrated tantalum, niobium, and titanium fluoride solutions by dissolution of their oxides or hydroxides in hydrofluoric acid were studied. Anatase titania, niobium oxide, and tantalum oxide calcined to 900°C were found to have high dissolution rates. Solid phases separated upon the dissolution of niobium, tantalum, and titanium oxides in hydrofluoric acid were identified as NbO2F, TaO2F, Ta3O7F, and TiOF2. Niobium hydroxide dissolution in an autoclave at the atmospheric pressure gave various complex salts: NH4NbOF4 and (NH4)3Nb2OF11.  相似文献   

18.
Differential cathode-ray polarography is applied to the direct determination of lead, titanium and niobium in lead titanate-zirconate solid-solution ceramics containing small additions of niobium pentoxide. Titanium and niobium are determined in buffered EDTA solution at pH 4.0 and lead in 1 M hydrochloric acid. With the high precision comparative technique, relative standard deviations of 0.11% and 0.31% for lead and titanium respectively are obtained. Niobium is determined by the subtractive technique.  相似文献   

19.
Extractive recovery with n-octanol of tantalum(V) and niobium(V) from hydrofluoric acid solutions containing large amounts of titanium (up to 2-3 M) was studied. The conditions were found for separation of tantalum(V) and niobium(V) from titanium(IV), allowing recovery of 95.7 and 84.1% of tantalum and niobium fluoride complexes, respectively, in one extraction cycle, with 2.6% recovery of titanium.  相似文献   

20.
Further work on the polarographic reduction of molybdenum(VI), niobium(V) and titanium(IV) in base electrolytes containing organic acids is reported. A base electrolyte of 0.5 M citric acid-0.025 M sulphuric acid-0.05 M thorium nitrate proved suitable for the determination of molybdenum and titanium in the presence of niobium, tantalum, tungsten and zirconium. A direct polarographic method using this base electrolyte is described for the determination of molybdenum in a niobium base alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号