首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The synthesis of Al–Cr single quasicrystal (QC) nanoparticles of the decagonal phase was achieved by introducing an advanced gas flow evaporation method. By obtaining successive electron diffraction patterns for single-QC nanoparticles, the phase transformation temperature of a single-QC nanoparticle was determined to be 700 °C. It was also determined that part of the QC nanoparticle decomposed into hex-Al8Cr5 and Al during the phase transformation. Since the grain growth did not occur during the phase transformation in the present experiment, the inherent phase transformation temperature could be measured.  相似文献   

2.
S. Burkardt  M. Erbudak   《Surface science》2008,602(17):2915-2920
Because of the immense structural mismatch between a crystal and a quasicrystal, the aluminum-oxide domains that grow on the pentagonal surface of icosahedral Al–Pd–Mn at high temperatures are in the order of a few nm large. Here, we exploit the small lateral extension of the oxide domains to grow crystalline Al particles in the same size-region by vapor deposition on them. Low-energy-electron diffraction and secondary-electron imaging investigations show that the nanocrystals expose their (1 1 1) faces parallel to the pentagonal surface of the quasicrystal, while the in-plane orientation of the crystallites is random. Spot-profile analysis of the diffracted beams indicate that the Al nanocrystals grow in 3 nm large domains up to a deposition thickness of 51 monolayers.  相似文献   

3.
The calcination of a TiO(acac)2/Mn(acac)3/epoxy resin complex under an oxygen atmosphere successfully produced nano-sized TiO2/MnO2/carbon clusters composite material. The surface characterizations of the resulting composites indicate that they are composed of nano-sized particles of TiO2, MnO2 and carbon clusters. ESR spectral examination suggests the possibility of an electron transfer in the process of MnO2 → carbon clusters → TiO2. The visible light-responsive oxidation–reduction function of the composite materials has also been confirmed.  相似文献   

4.
The optical and structural properties of mixed ZnO/MgO particles prepared by solution techniques are investigated by the cathodoluminescence and electron microscopy techniques. The samples annealed at 400–1000 °C show well crystalline wurtzite structure of the ZnO (MgZnO) particles with the size in range of 10–100 nm. Annealing at high temperatures (>700 °C) leads to Mg diffusion in ZnO and MgxZn1−xO alloy formation. The blue shifts of the near-band-edge emission as a result of the alloy band gap widening and quantum confinement effect for the small size particles are demonstrated.  相似文献   

5.
The crystal structures and magnetic properties of Ti0.9747Mn0.0253O2 films prepared by sol–gel dip coating have been investigated. Room temperature ferromagnetism was observed both in the films of pure anatase phase and of mixed anatase and rutile phases. For the first time, enhancement of the ferromagnetism was revealed as the phase transition from anatase to rutile occurs: from 0.7±0.01μB/Mn to 1.1±0.05μB/Mn. The possible mechanism for the observed magnetism enhancement is discussed.  相似文献   

6.
Zn1−xMnxFe2O4 (x = 0, 0.2 and 0.4) nanomaterials were synthesized by sol–gel citrate method and studied structural and gas sensing properties. The structural characteristics of synthesized nanomaterials were studied by X-ray diffraction measurement (XRD) and transmission electron microscope (TEM). The results revealed that the particle size is in the range of 30–35 nm for Mn–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like LPG, CH4, CO and ethanol and it is observed that Mn–Zn ferrite shows high response to ethanol at relatively lower operating temperature. The Zn0.6Mn0.4Fe2O4 nanomaterial shows better sensitivity towards ethanol at an operating temperature 300 °C. Incorporation of 1.5 wt.% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 °C to 230 °C for ethanol sensor. The response time of 200 ppm ethanol in air is about 10s.  相似文献   

7.
A modified hydrogenation–disproportionation desorption-recombination (HDDR) process consisting of (i) solid disproportionation and (ii) slow recombination under partial hydrogen pressure has been applied to a Nd16.2Fe78.2B5.6 alloy. Scanning electron microscopy shows that an initially fine rod-like structure of NdHx and Fe observed after 15 min of hydrogenation at 900°C is transformed into a granular morphology with prolonged annealing. Simultaneously, finely dispersed tetragonal Fe3B particles of 10–50 nm diameter exist. XRD studies show that this metastable Fe3B phase is transformed to Fe2B and Fe on further annealing. Short solid-disproportionation times result in a higher degree of anisotropy after recombination, whereas long annealing times and conventional processing lead to isotropic material. It is concluded that the formation of the intermediate tetragonal Fe3B phase after solid disproportionation is pivotal for the inducement of texture in HDDR processed ternary NdFeB-type alloys.  相似文献   

8.
The objective of this study was to gain understanding of the preignition oxidation of Al powders in CO2. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC). The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). Dimensional properties of Al particles have a significant influence on the oxidation processes. Distinctly different properties were shown between nm-Al and μm-Al, where the reactions are found to occur at different temperature ranges. The powder behavior is controlled by the oxide layer that coats each particle and prevents exposure of the metal core to the reactive CO2 gas. The properties of the oxide layer are related to the particle size. Carbon has been shown to play an important role in the reacting Al–CO2 system. A new mechanism of nano-Al particle oxidation in CO2 under gradually increasing temperature was proposed.  相似文献   

9.
The metal–ferrite composites FexCo1−x/CoyFe1−yFe2O4 are synthesized by using disproportion of Fe (II) and reduction of Co (II) by Fe0 under hydrothermal condition. The size of the particles of the composites decreases as the [KOH] decreasing. The composites are measured by TEM and it can be deduced that when [KOH] = 0.1, the size of the alloy body-centered cubic (BCC) in composites is 20 ± 7 nm, the size of the Cobalt ferrite (spinel) is 170 ± 50 nm. The maximal value of the saturation magnetization (Ms) of the composite is about 100.14 emu/g, which is synthesized under Co (II)/Fe (II) = 0.05, [KOH] = 1 N, T = 150 °C and t = 3 h. The value of Hc of the composite synthesized under Co (II)/Fe (II) = 0.5, t = 3 h, T = 150 °C and [KOH] = 10.2 mol/L is about 2878.19 Oe. The Fe–Co alloy is synthesized through a reduction reaction of the composites in a flowing gaseous mixture. There is a maximal value (302.9 emu/g) of the Ms for the alloys generated at 1000 °C, which is the Co0.412Fe0.588 alloy.  相似文献   

10.
We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20–1200°C with 5–1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21–23-nm at 600°C and above. Precursor decomposition occurred between 20°C and 500°C. The increased mobility particle size at 700°C and above was observed to coincide with irregular particles at 700°C and 800°C and faceted particles between 900°C and 1200°C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500–1200°C and above 600°C the particles were single crystals. Indications of minor rutile formation were observed at 1200°C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal–crystal attachment points.  相似文献   

11.
This paper reports the effect of surface topography of titanium dioxide films on short-circuit current density of photoelectrochemical solar cell of ITO/TiO2/PVC-LiCLO4/graphite. The films were deposited onto ITO-covered glass substrate by screen-printing technique. The films were tempered at 300 °C, 350 °C, 400 °C, 450 °C and 500 °C for 30 min to burn out the organic parts and to achieve the films with porous structure. The surface roughness of the films were studied using scanning electron microscope (SEM). Current–voltage relationship of the devices were characterized in dark at room temperature and under illumination of 100 mW cm−2 light from tungsten halogen lamp at 50 °C. The device utilising the TiO2 film annealed at 400 °C produces the highest short-circuit current density and open-circuit voltage as it posses the smoothest surface topography with the electrolyte. The short-circuit current density and open-circuit voltage of the devices increase with the decreasing grain size of the TiO2 films. The short-circuit current density and open-circuit voltage are 0.6 μA/cm2 and 109 mV respectively.  相似文献   

12.
In this study, we report the novel β-Ga2O3 nanostructures synthesized by the thermal evaporation of Ga droplet in the presence of Au catalysts at 900 °C. The morphology and structure of the products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The single-crystalline β-Ga2O3 nanosheets have lateral dimensions up to several tens of microns. Large arrays of column-like layered crystal β-Ga2O3 structures that consisted of many nanosheets were formed on the Au-coated silicon substrate under the suitable vapor concentration. These novel β-Ga2O3 nanostructures are expected to have potential application in functional nanodevices.  相似文献   

13.
Nano-crystalline indium oxide (In2O3) particles have been synthesized by sol–gel and hydro-thermal techniques. A simple hydro-alcoholic solution consisting indium nitrate hydrate and citric acid (in sol–gel method) and 1, 4-butandiol (in hydro-thermal method) have been utilized. The structural properties of indium oxide nano-powders annealed at 450 °C (for both methods) have been characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and specific surface area (SSA) analysis. Structural analysis of the samples shows cubic phase in sol–gel and cubic-hexagonal phase mixture in hydro-thermally prepared particles. The nano-particles prepared by sol–gel method have nearly spherical shape, whereas hydro-thermally-made ones display wire- and needle-like shape in addition to the spherical shape. The obtained In2O3 nano-particles surface areas were 23.2 and 55.3 in sol–gel and hydro-thermal methods, respectively. The optical direct band gap of In2O3 nano-particles were determined to be 4.32 and 4.24 eV for sol–gel and hydro-thermal methods, respectively. These values exhibit 0.5 eV blue shift from that the bulk In2O3 (3.75 eV), which is related to the particle size reduction and approaching the quantum confinement limit of nano-particles.  相似文献   

14.
A new experimental technique is proposed to measure the product CO/CO2 ratio at the surface of spherical char particles during fluidized bed combustion. It is based on the measurement of the burning rate of a single char particle under low oxygen concentration conditions and on the use of an accurate prediction of the particle Sherwood number. This technique was applied to spherical char particles obtained from a bituminous coal which is characterized by a low attrition and fragmentation propensity. The product CO/CO2 ratio was measured at a bed temperature of 850 °C and at a fluidization velocity of 0.3 m/s in a lab-scale apparatus operated with a bed of 0.5–0.6 mm sand. The char particle size was varied between 2 and 7 mm and the inlet oxygen concentration between 0.1% and 2.0%. Results showed that under the experimental conditions investigated carbon was mostly oxidized to CO2 within the particle boundary layer, with a maximum fraction of carbon escaping as CO of 10–20% at the lowest oxygen concentrations and largest particle sizes.  相似文献   

15.
溅射法制备Ag/Ag2O超微粒子的分析   总被引:3,自引:0,他引:3       下载免费PDF全文
用X射线衍射、X射线光电子能谱、透射电子显微镜和差示扫描量热法对溅射法制备的Ag超微粒子的晶体学结构、表面组成、微粒形态和热力学性质进行了分析。结果表明,所制备的微粒为内部为Ag、表面为Ag2O的两相微粒,以及单一的Ag2O微粒,粒径在10nm以上的微粒没有确定的外形,粒径在10nm以下的微粒为球形。微粒有不同于块体金属Ag的异常热效应。到40天时,沉积在碳膜上的Ag,Ag2O两相微粒有一部份还原形成了单一的金属Ag超微粒子。 关键词:  相似文献   

16.
The structural properties of a-Al2O3/Ge, a-Al2O3/In0.5Ga0.5As and a-Al2O3/In0.5Al0.5As/InGaAs interfaces were investigated by density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-Al2O3 samples were generated using a hybrid classical-DFT MD “melt and quench” approach. The interfaces were formed by annealing at 700 K/800 K and 1100 K with subsequent cooling and relaxation. The a-Al2O3/Ge interface demonstrates pronounced interface intermixing and interface bonding exclusively through Al–O–Ge bonds generating high interface polarity. In contrast, the a-Al2O3/InGaAs interface has no intermixing, Al–As and O–In/Ga bonding, low interface polarity due to nearly compensating interface dipoles, and low substrate deformation. The a-Al2O3/InAlAs interface demonstrated mild intermixing with some substrate Al atoms being adsorbed into the oxide, mixed Al–As/O and O–Al/In bonding, medium interface polarity, and medium substrate deformation. The simulated results demonstrate strong correlation to experimental measurements and illustrate the role of weak bonding in generating an unpinned interface for metal oxide/semiconductor interfaces.  相似文献   

17.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.  相似文献   

18.
In this study, the structure and substructure of SiO2–Mg phosphate tungsten bronzes, MgPTB, (MgHPW12O40 · 29H2O) obtained by ultrasonic spray pyrolysis method from a silica sol, and a MgPTB solution, obtained by the ion exchange method, as precursors were investigated.The mechanism of the formation of aerosol droplets is discussed. Phase composition, structure and substructure of SiO2–MgPTB particles were investigated by X-ray powder diffraction (XRPD) analysis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM).Good agreement between the theoretically predicted values for the mean diameters of particles and subparticles (1.27 μm and 75.4 nm, respectively) and the experimentally obtained ones (1.17 μm and 65–90 nm) was found.This agreement confirms the applicability of the model to get a satisfactory prediction of the most important data related to the nano-structural design of SiO2–MgPTB powders.  相似文献   

19.
A composite ceramic coating containing Al2O3–ZrO2–Y2O3 was successfully prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) technique in an alkaline aluminate electrolyte. The morphology, elemental and phase composition, corrosion behavior and thermal stability of the uncoated and coated samples were studied by environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD), electrochemical corrosion test, high temperature oxidation test and thermal shock test. The results showed that the composite ceramic coating was composed of Al2O3, c-ZrO2, t-ZrO2, Y2O3 and some magnesium compounds, such as MgO, MgF2 and MgAl2O4. After PEO treatment, the corrosion potential of AZ91D alloy was increased and the corrosion current density was significantly reduced. Besides, the coated magnesium alloys also showed excellent high temperature oxidation resistance and thermal shock resistance at 500 °C environment.  相似文献   

20.
α-Fe2O3 nanoparticles were prepared by high-energy ball milling using α-FeOOH as raw materials. The prepared samples were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy, X-ray diffraction (XRD) and differential thermal analysis–thermogravimetric analysis (DTA–TGA). The results showed that after 90 h milling α-Fe2O3 nanoparticles were obtained, and the particle size is about 20 nm. The mechanism of reaction during milling is supposed that the initial α-FeOOH powder turned smaller and smaller by the high-speed collision during ball milling, later these particles turned to be superparamagnetic, at last these superparamagnetic α-FeOOH particles were dehydrated and transformed into α-Fe2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号