首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fundamental study on the adsorption of metal elements on Shirasu, a pyroclastic flow deposit distributed in southern Kyushu, Japan, has been conducted. The adsorption experiment was carried out by a batch method, and by using Zn(II) and Cu(II) under several conditions; the effects of the initial concentration of metal ions, grain size, and pH were investigated. At smaller grain sizes, the amount of Zn(II) and Cu(II) adsorbed increased. At higher pH values, the amount of Zn(II) and Cu(II) adsorbed increased. Plots of the adsorption isotherm indicated that the adsorption of Zn(II) and Cu(II) on Shirasu followed the Langmuir isotherm model, and the Langmuir isotherm constants, W(0) and b, were obtained. W(0) at pH 5.0 was approximately two-times larger than that at pH 3.0. This may reflect an increase in the number of anionic binding sites on the surface of Shirasu with an increase in the pH. The b value for Zn hardly changed with an increase in the pH, and for Cu the value decreased with an increase in the pH. These observations suggest that anionic binding sites have a low stability constant, since the apparent stability constant, b, is obtained as the average of stability constant of all sites on the Shirasu surface.  相似文献   

2.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

3.
The removal of Cu(II), Zn(II) and Ni(II) from solutions using biosorption in cork powder is described. The adsorption isotherms were determined, along with the effect of different variables, such as the solid–liquid ratio, temperature and pH on the removal efficiency of the metals. The potentiometric titration curve of the cork biomass was determined and some zeta-potential studies were carried out. The effect of the pre-treatment by Fisher esterification on the biosorption properties of cork is also presented. It was concluded that the adsorption of the heavy metals was favoured by an increase in pH. The degree of heavy metal removal is directly related to the concentration of cork biomass, and the maximum sorption capacity of cork biomass for Cu(II), Zn(II) and Ni(II) was 0.63, 0.76 and 0.34 meq./g, respectively. It is shown that ion exchange plays a more important role in the sorption of Cu(II) and Ni(II) on cork biomass than in the sorption of Zn(II). The pre-treatment by Fisher esterification confirmed the important role of the carboxylic groups in binding of Cu(II) and Ni(II) and showed that they are the only binding sites for Zn(II).  相似文献   

4.
The present study reports removal of As(V) by adsorption onto laboratory-prepared pure and Cu(II)-, Ni(II)-, and Co(II)-doped goethite samples. The X-ray diffraction patterns showed only goethite as the crystalline phase. Doping of ions in the goethite matrix resulted in shift of d-values. Various parameters chosen for adsorption were nature of adsorbent, percentage of doped cations in goethite matrix, contact time, solution pH, and percentage of adsorbate. It was observed that the pH(pzc) of the goethite surface depended on the nature and concentration of metal ions. The surface area as well as the loading capacity increased with the increase of dopant percentage in goethite matrix. A maximum loading capacity of 19.55 mg/g was observed for 2.7% Cu(II)-doped goethite. The adsorption kinetics for Ni(II), Co(II) and for undoped goethite attained a quasi-equilibrium state after 30 min with almost negligible adsorption beyond this time. In case of Cu(II)-doped goethite samples, the quasi-equilibrium state for As(V) adsorption was observed after 60 min. At each studied pH condition, it was observed that the percentage of adsorption of As(V) decreased in the order Cu(II)-doped goethite > or = Ni(II)-doped goethite > Co(II)-doped goethite > pure goethite. The adsorption followed: Langmuir isotherm, indicating monolayer formation.  相似文献   

5.
Metalloproteins are an attractive target for de novo design. Usually, natural proteins incorporate two or more (hetero- or homo-) metal ions into their frameworks to perform their functions, but the design of multiple metal-binding sites is usually difficult to achieve. Here, we undertook the de novo engineering of heterometal-binding sites, Ni(II) and Cu(II), into a designed coiled coil structure based on an isoleucine zipper (IZ) peptide. Previously, we described two peptides, IZ-3adH and IZ-3aH. The former has two His residues and forms a triple-stranded coiled coil after binding Ni(II), Zn(II), or Cu(II). The latter has one His residue, which allowed binding with Cu(II) and Zn(II), but not with Ni(II). On the basis of these properties, we newly designed IZ(5)-2a3adH as a heterometal-binding peptide. This peptide can bind Cu(II) and Ni(II) simultaneously in the hydrophobic core of the triple-stranded coiled coil. The first metal ion binding induced the folding of the peptide into the triple-stranded coiled coil, thereby promoting the second metal ion binding. This is the first example of a peptide that can bind two different metal ions. This construction should provide valuable insights for the de novo design of metalloproteins.  相似文献   

6.
Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.0 and 3.0, respectively. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir and Freundlich isotherms models. The adsorption kinetics follows the mechanism of the pseudo-second-order equation for all studied systems and this mechanism suggests that the adsorption rate of metal ions by CHS-BPMAMF depends on the number of ions on the adsorbent surface, as well as on their number at equilibrium. The best interpretation for the equilibrium data was given by the Langmuir isotherm and the maximum adsorption capacities were 109 mg g-1 for Cu(II), 38.5 mg g-1 for Cd(II), and 9.6 mg g-1 for Ni(II). The obtained results show that chitosan modified with BPMAMF ligand presented higher adsorption capacity for Cu(II) in all studied pH ranges.  相似文献   

7.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

8.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

9.
The effects of o-phenanthroline and 2,2′-bipyridine on the adsorption of metal(II) (Fe, Co, Ni and Cu) ions onto silica gel surface have been studied. The adsorption is expressed in terms of the measured concentrations of both metal and ligand at equilibrium. Each adsorption of the four metal ions is increased with the presence of the ligands. In addition, adsorption increases slowly with pH at low pH values and then increases rapidly up to near the pKa value of silica gel (≈6.5). The adsorption of each metal ion at low pH is increased with increased ligand concentration. However, at high pH the adsorptions of Fe(II) and Cu(II) are decreased with increased ligand concentration whereas the adsorptions of Co(II) and Ni(II) are always increased. At low pH values the ligand to metal ratio adsorbed on the silica gel surface is ca. 3:1 while at high pH values it is 1:1, 2:1, and 3:1, corresponding to the initial ligand to metal ion concentration ratio. The addition of ethanol to the phenanthroline-SiO2 solution results in a decrease in the adsorption of phenanthroline. The effect of ethanol is also observed in the Fe(II)-phenanthroline-SiO2 system. The behavior of the adsorption is interpreted qualitatively by hydrophobic expulsion, the formation of surface complexes, and electrostatic interaction. It is concluded that hydrophobic expulsion plays an important role in the adsorption of metal ions in the presence of hydrophobic ligands on silica gel surface.  相似文献   

10.
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.  相似文献   

11.
Chromatin proteins are believed to represent reactive sites for metal ion binding. We have synthesized the 31 amino acid peptide Ac-NSFVNDIFERIAGEASRLAHYNKRSTITSRE-NH2, corresponding to the 63-93 fragment of the histone H2B and studied its interaction with Cu(II) and Ni(II). Potentiometric and spectroscopic studies (UV-vis, CD, NMR and EPR) showed that histidine 21 acts as an anchoring binding site for the metal ion. Complexation of the studied peptide with Cu(II) starts at pH 4 with the formation of the monodentate species CuH2L. At physiological pH values, the 3N complex (N(Im), 2N(-)), CuL is favoured while at basic pH values the 4N (N(Im), 3N(-)) coordination mode is preferred. Ni(II) forms several complexes with the peptide starting from the distorted octahedral NiH2L at about neutral pH, to a square planar complex where the peptide is bound through a (N(Im), 3N(-)) mode in an equatorial plane at basic pH values. These results could be important in revealing more information about the mechanism of metal induced toxicity and carcinogenesis.  相似文献   

12.
Adsorption behavior of Pb(II) on montmorillonite   总被引:1,自引:0,他引:1  
The present work investigated the adsorption and desorption behaviors of Pb(II) on montmorillonite. The adsorption experiments were carried out using batch process. The results show that the adsorption is dependent on the pH value of the medium, and the uptake of Pb(II) increases with the pH increasing in the pH range of 2.0–10.0. The adsorption kinetics is in better agreement with pseudo-second order kinetics, and the adsorption data is a good fit with Langmuir isotherm. The presence of EDTA may result in a decrease of the amount of Pb(II) adsorbed. The presence of electrolyte and EDTA may enhance the desorption of Pb(II) ions adsorbed. The adsorption mechanism of Pb(II) on montmorillonite may be explained in two aspects: the chemical binding between Pb(II) ions and surface hydroxyl groups; and the electrostatic binding between Pb(II) ions and the permanent negatively charged sites of montmorillonite.  相似文献   

13.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

14.
Magnesium oxide nanoparticles were synthesized and modified by olive pomace (NMOOP700) as a novel sorbent and characterized using Fourier Transform Infrared Spectra, Scanning Electron Microscope, Transmission Electron Microscope, X-ray Diffraction, Differential Thermal Analysis and Thermal Gravimetric Analysis. Sorption of Cu (II) or Ni (II) ions were achieved taking into account important parameters including initial pH of the medium, contact time, initial metal ion concentration and temperature. A comparative study between Magnesium oxide nanoparticles and NMOOP700 material for the sorption of Cu (II) or Ni (II) ions was implemented. The obtained data revealed that the sorption process is significantly improved using NMOOP700. The monolayer capacity of Ni (II) and Cu (II) metal ions on NMOOP700 at pH 5 were found to be 149.93 ± 4.4 and 186.219 ± 6.3 mg/g, respectively. Findings of the present work highlight the potential use of NMOOP700 as a novel and effective sorbent material for the removal of Cu (II) or Ni (II) ions from the liquid phase.  相似文献   

15.
The aim of this study is to explain how clay minerals adsorb heavy metals individually and in the presence of humic acid, and to model heavy metal adsorption specifically based on surface-metal binary and surface-metal-ligand ternary complexation. The adsorption of Cu(II) and Pb(II) on kaolinite-based clay minerals has been modeled by the aid of the FITEQL3.2 computer program using single- and double-site binding models of the Langmuir approach. Potentiometric titrations and adsorption capacity experiments were carried out in solutions containing different concentrations of the inert electrolyte NaClO4; however, the modeling of binary and ternary surface complexation was deliberately done at high ionic strength (0.1 M electrolyte) for eliminating adsorption onto the permanent negatively charged sites of kaolinite. A "two-site, two pKa" model was adapted, and as for the two surface sites responsible for adsorption, it may be arbitrarily assigned that [triple bond]S1OH sites represent silanol and organic functional groups such as carboxyl having pKa values close to that of silanol, and [triple bond]S2OH sites represent aluminol and organic functional groups such as phenolics whose pKa values are close to that of aluminol, as all the studied clays contained organic carbon. Copper(II) showed a higher adsorption capacity and higher binding constants, while lead(II), being a softer cation (in respect to HSAB theory) preferred the softer basic sites with aluminol-phenol functional groups. Heavy metal cations are assumed to bind to the clay surface as the sole (unhydrolyzed) M(II) ion and form monodentate surface complexes. Cu(II) and Pb(II) adsorption in the presence of humic acid was modeled using a double-site binding model by the aid of FITEQL3.2, and then the whole system including binary surface-metal and surface-ligand and ternary surface-metal-ligand complexes was resolved with respect to species distributions and relevant stability constants. Electrostatic effects were accounted for using a diffuse layer model (DLM) requiring minimum number of adjustable parameters. Metal adsorption onto clay at low pH increased in the presence of humic acid, and the metal adsorption vs pH curves of metal-kaolinite-humic acid suspensions were much steeper (and distinctly S shaped) compared to the wider pH-gradient curves observed in binary clay-metal systems. The clay mineral in the presence of humic acid probably behaved more like a chelating ion-exchanger sorbent for heavy metals rather than being a simple inorganic ion exchanger.  相似文献   

16.
The effects of pH have been examined on the extraction of the title ions by complexing with LIX-64N in kerosene. The extent of metal extraction as a function of pH is: Cu(II) < Fe(III) < Ni(II) < Zn(II) < Co(II). Stripping of all metal ions but cobalt with sulphuric acid from loaded kerosene complexing solutions is easily accomplished. Oxidation of Co(II) to Co(III) in the organic phase prevents stripping of this metal ion.  相似文献   

17.
The aim of the present study was to investigate the adsorption properties of aminopropyltriethoxysilane (APS) modified microfibrillated cellulose (MFC) in aqueous solutions containing Ni(II), Cu(II) and Cd(II) ions. The modified adsorbents were characterized using elemental analysis, Fourier transform infrared spectroscopy, SEM and zeta potential analysis. The adsorption and regeneration studies were conducted in batch mode using various different pH values and contact times. The maximum removal capacities of the APS/MFC adsorbent for Ni(II), Cu(II), and Cd(II) ions were 2.734, 3.150 and 4.195 mmol/g, respectively. The Langmuir, Sips and Dubinin-Radushkevich models were representative to simulate adsorption isotherms. The adsorption kinetics of Ni(II) Cu(II), and Cd(II) adsorption by APS/MFC data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that the pseudo-second-order kinetic equation and intra-particle diffusion model were adequate to describe the adsorption kinetics.  相似文献   

18.
We studied the adsorption behavior of Cu(II) and Mn(II) on the surface of titanium dioxide over the pH range from 2.0 to 11.5. The titanium dioxide we used in these experiments was prepared by hydrolyzing TiCl4 and had a surface area of 113.7 m2 g−1. All suspensions, which were 9.04 × 10−3 M in NaClO4, contained 20 m2 liter−1 of oxide surface and divalent metal ion concentrations sufficient (at full adsorption from solution) to cover the available surface with one-half, one, and four layers of close-packed, hydrated ions. Both divalent ions began adsorption below titanium dioxide's isoelectric point (pH = 6.2). Cu2+ adsorption was accompanied by net OH uptake from solution and it was inferred that the titania surface also provided OH for Cu2+ adsorption. ESR spectra demonstrate the coexistence of two distinct forms adopted by these metal ions on the surface. A portion of the adsorbed metal ions occupies sites magnetically isolated one from another, as evidenced by the paramagnetic behavior of this form. The majority of the metal ions, however, exist in hydrous-metal-ion clusters in which spin-exchange coupling of the electron dipoles determines the magnetic behavior. Electrophoretic mobility measurements indicate that ions adsorbed at isolated sites exert a stronger influence on the electrophoretically measured charge of the suspension particles than ions in clusters. Even though these experiments were performed in the absence of oxygen, we observed the oxidation of a limited amount of the Mn(II) on the surface as low as pH = 5. Presumably this occurs as a result of electron transfer between photo-induced electron holes and Mn(II) on the surface.  相似文献   

19.
The binding of Ni(II) and Cu(II) to histidine, to the tripeptides GlyGlyHis and HisGlyHis, and to the protein bovine serum albumin has been studied by isothermal titration calorimetry (ITC) to determine the experimental conditions and data analysis necessary to reproduce literature values for the binding constants and thermodynamic parameters. From analysis of the ITC data, we find that there are two major considerations for the use of this method to accurately quantify metal ion interaction with biological macromolecules. First, to determine true pH-independent binding constants, ITC data must be corrected for metal ion competition with protons by accounting for the experimental pH and pKa values of the metal-binding residues. Second, metal interaction with the buffer (stability and enthalpy of formation of metal-buffer complex(es)) must be included in the analysis of the ITC data to determine the binding constants and the change in enthalpy. While it may be possible to use a buffer that forms only weak, and therefore negligible, complexes with the metal, a buffer that has a strong and well-characterized interaction has the benefit of suppressing metal ion hydrolysis and precipitation, and of allowing the quantification of high-affinity metal-binding sites on biological macromolecules. This study has also quantified the contribution of the N-terminal imidazole of HisGlyHis to the stability of the Cu(II) and Ni(II) complexes of this protein sequence and has provided new insight about Cu(II) binding to albumin.  相似文献   

20.
Metal ion specificity studies of divinylbenzene (DVB)-crosslinked polyacrylamide-supported glycines in different structural environments were investigated. The effect of the degree of crosslinking on the specific rebinding of the desorbed metal ion was investigated towards Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal ion-desorbed resins showed specificity for the desorbed metal ion and the specificity characteristics increases with an increasing degree of the crosslinking agent. The polymeric ligands and metal complexes were characterized by IR, UV-visible and EPR spectra, and by SEM analysis. The swelling and solvation characteristics of the crosslinked polymers, polymeric ligands and metal complexes, the effect of the pH dependence on metal ion binding and rebinding and the kinetics of metal ion binding and rebinding were also followed. The complexation resulted in the downfield shift of the carboxylate peak in the IR spectra. The EPR parameters are in agreement with a distorted tetragonal geometry. The Cu(II) ion-desorbed resins selectively rebinds Cu(II) ions from a mixture of Cu(II) and Co(II) and Cu(II) and Ni(II) ions. The resin could be regenerated several times without loss of capacity and effective for the specific and selective rebinding of Cu(II) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号