首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the nanoscale phase coexistence of ferromagnetic metallic and antiferromagnetic insulating (AFI) regions by including the effect of AF superexchange and weak disorder in the double exchange model. We use a new Monte Carlo technique, mapping on the disordered spin-fermion problem to an effective short range spin model, with self-consistently computed exchange constants. We recover "cluster coexistence" as seen earlier in exact simulation of small systems. The much larger sizes, approximately 32 x 32, accessible with our technique, allow us to study the cluster pattern for varying electron density, disorder, and temperature. We track the magnetic structure, obtain the density of states, with its "pseudogap" features, and, for the first time, provide a fully microscopic estimate of the resistivity in a phase coexistence regime, comparing it with the "percolation" scenario.  相似文献   

2.
A zero temperature Anderson-Mott transition driven by spin disorder can be "tuned" by an applied magnetic field to achieve colossal magnetoconductance. Usually this is not possible since spin disorder by itself cannot localize a high density electron system. However, the presence of strong structural disorder can realize this situation, self-consistently generating a disordered magnetic ground state. We explore such a model, constructed to understand amorphous GdSi, and highlight the emergence of a spin glass phase, Anderson-Mott signatures in transport and tunneling spectra, and unusual magneto-optical conductivity. We solve a disordered strong coupling fermion-spin-lattice problem essentially exactly on finite systems and account for all the qualitative features observed in magnetism, transport, and the optical spectra in this system.  相似文献   

3.
We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb impurity, Z|e|/r, in graphene. Our analysis is based on the exact electron Green's function, obtained by using the operator method, and leads to results that are exact in the parameter Zalpha, where alpha is the "fine-structure constant" of graphene. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge Z(eff), determined by the localized induced charge. We find that an impurity with bare charge Z=1 remains subcritical, Z(eff)alpha<1/2, for any alpha, while impurities with Z=2, 3 and higher can become supercritical at certain values of alpha.  相似文献   

4.
We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.  相似文献   

5.
We analyze the problem of interacting electrons on a ballistic quantum dot with chaotic boundary conditions, where the effective interactions at low energies are characterized by Landau parameters. When the dimensionless conductance g of the dot is large, the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as g --> infinity (as in a large-N theory), leading to a phase transition in each Landau interaction channel. In the weak-coupling phase constant charging and exchange interactions dominate the low-energy physics, while the strong-coupling phase displays a spontaneous distortion of the Fermi surface, smeared out by disorder.  相似文献   

6.
We develop a Non-Crossing Approximation (NCA) for the effective cluster problem of the recently developed Dynamical Cluster Approximation (DCA). The DCA technique includes short-ranged correlations by mapping the lattice problem onto a self-consistently embedded periodic cluster of size . It is a fully causal and systematic approximation to the full lattice problem, with corrections in two dimensions. The NCA we develop is a systematic approximation with corrections . The method will be discussed in detail and results for the one-particle properties of the Hubbard model are shown. Near half filling, the spectra display pronounced features including a pseudogap and non-Fermi-liquid behavior due to short-ranged antiferromagnetic correlations. Received 16 June 1999  相似文献   

7.
张昭庆 《物理学报》1981,30(1):97-104
本文将处理二元无序合金电子性质的平均单粒子和双粒子格林函数的图形分析推广到多元无序合金。在单格点近似下,如果我们自洽地处理累积量中的多次占有修正,则从图形分析得到的平均单粒子和双粒子格林函数与相干势近似的结果相一致。 关键词:  相似文献   

8.
We solve the disordered Holstein model in three dimensions considering the phonon variables to be classical. After mapping out the phases of the "clean" strong coupling problem, we focus on the effect of disorder at strong electron-phonon (EP) coupling. The presence of even weak disorder (i) enormously enhances the resistivity (rho) at T=0, simultaneously suppressing the density of states at the Fermi level, (ii) suppresses the temperature dependent increase of rho, and (iii) leads to a regime with drho/dT<0. We locate the origin of these anomalies in the disorder induced tendency towards polaron formation, and the associated suppression in effective carrier density and mobility. These results, explicitly at "metallic" density, are of direct relevance to disordered EP materials such as covalent semiconductors, the manganites, and to anomalous transport in the A-15 compounds.  相似文献   

9.
We study the ground state properties of a superconductor-ferromagnet-insulator trilayer on the basis of a Hubbard Model featuring exchange splitting in the ferromagnet and electron-electron attraction in the superconductor. We solve the spin-polarized Hartree-Fock-Gorkov equations together with the Maxwell's equation (Ampere's law) fully self-consistently with respect to the order parameter and the current. For certain values of the exchange splitting we find that a spontaneous spin polarized current is generated in the ground state and is intimately related to Andreev bound states at the Fermi level. Moreover, the polarization of the current strongly depends on the band filling. Received 23 September 2002 / Received in final form 13 December 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: m.a.krawiec@bristol.ac.uk  相似文献   

10.
In this paper we theoretically discuss the magnetocaloric effect in Tb5Si2Ge2 under applied pressure. We use a model of interacting spins where the effective exchange interaction parameter was self-consistently calculated in terms of the electronic structure of the compound. Our theoretically calculated isothermal entropy changes show the good trend of the available experimental data.  相似文献   

11.
We quantitatively describe the main features of the magnetically induced conductance modulation of a Kondo quantum dot-or chessboard pattern-in terms of a constant-interaction double quantum dot model. We show that the analogy with a double dot holds down to remarkably low magnetic fields. The analysis is extended by full 3D spin density functional calculations. Introducing an effective Kondo coupling parameter, the chessboard pattern is self-consistently computed as a function of magnetic field and electron number, which enables us to explain our experimental data quantitatively.  相似文献   

12.
Based on the statistical dynamic mean-field theory, we investigate, in a generic model for a strongly coupled disordered electron–phonon system, the competition between polaron formation and Anderson localization. The statistical dynamic mean-field approximation maps the lattice problem to an ensemble of self-consistently embedded impurity problems. It is a probabilistic approach, focusing on the distribution instead of the average values for observables of interest. We solve the self-consistent equations of the theory with a Monte Carlo sampling technique, representing distributions for random variables by random samples, and discuss various ways to determine mobility edges from the random sample for the local Green function. Specifically, we give, as a function of the ‘polaron parameters’, such as adiabaticity and electron–phonon coupling constants, a detailed discussion of the localization properties of a single polaron, using a bare electron as a reference system.  相似文献   

13.
In this work we discuss the occurrence of ferromagnetism in transition-like metals. The metal is represented by two hybridized (V) and shifted (epsilons) bands one of which includes Hubbard correlation whereas the other is uncorrelated. The starting point is to transform the original Hamiltonian into an effective one. Only one site retains the full correlation (U) while in the others the correlations are represented by an effective field, the self-energy (single-site approximation). This field is self-consistently determined by imposing the translational invariance of the problem. Thereby one gets an exchange split quasi-particle density of states and then an electron-spin polarization for some values of the parameters (U,V, α, epsilons), α being the ratio of the effective masses of the two bands and of the occupation number n.  相似文献   

14.
We investigate localization behavior of quasiparticles in disordered multi-plane superconductors with s-wave pairing. By introducing disorder with random site energies, the spatial fluctuations of Bogoliubov-de Gennes pairing potential are self-consistently determined. The size dependence of rescaled localization length for a long bar is calculated by using the transfer-matrix method. From the finite-size scaling analysis we show that there exists a critical point of the disorder strength Wc which separates the extended and localized quasiparticle states in such quasi-two-dimensional systems. The associated critical behavior is studied and the relationship of the results to the number of planes is discussed.  相似文献   

15.
A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfvénic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.  相似文献   

16.
Using a supersymmetry formalism, we reduce exactly the problem of electron motion in an external potential to a new supermatrix model valid at all distances. All approximate nonlinear sigma models obtained previously for disordered systems can be derived from our exact model using a coarse-graining procedure. As an example, we consider a model for a smooth disorder and demonstrate that using our approach does not lead to a "mode-locking" problem. As a new application, we consider scattering on strong impurities for which the Born approximation cannot be used. Our method provides a new calculational scheme for disordered and chaotic systems.  相似文献   

17.
The coherent potential approximation is not sufficiently accurate to describe the details of the energy spectrum of a disordered alloy when the mean free path is short. A new approximation based on treating, self-consistently, clusters of sites is introduced.  相似文献   

18.
The Coherent Exchange Cluster Approach, developed within two proceeding papers, is applied to dilute quasi two-dimensional Heisenberg spin-systems, consisting of one magnetic and one nonmagnetic alloying component. The level density of spin wave excitations is discussed for concentrations of the magnetic component, which are larger than the critical value, where all excitations become localized. The propagation of the excitations through the disordered system is described by an effective Heisenberg-Hamiltonian with a complex and energy-dependent exchange integral \(\tilde J\) (E). This quantity is determined by the postulate, that the most important matrix elements of the scatteringT-matrix should vanish after averaging over the possible configurations of a scattering cluster, consisting of a central lattice site and its four nearest neighbours. Numerical results are obtained both for the “dilute bond” and “site” problems, respectively; in both cases, the results agree rather well with existing computer simulations for 30 × 30 spin arrays. For the “site” problem, it is necessary to introduce a coherent single ion anisotropy field in addition to the coherent exchange integral: Results in agreement with the analyticity requirements are obtained by a careful choice of the additional selfconsistency equation.  相似文献   

19.
We propose a self-consistent approximate solution of the disordered Kondo-lattice model (KLM) to get the interconnected electronic and magnetic properties of ‘local-moment’ systems like diluted ferromagnetic semiconductors. Aiming at (A1-xMx)(A1-xMx) compounds, where magnetic (M)(M) and non-magnetic (A)(A) atoms distributed randomly over a crystal lattice, we present a theory which treats the subsystems of itinerant charge carriers and localized magnetic moments in a homologous manner. The coupling between the localized moments due to the itinerant electrons (holes) is treated by a modified RKKY-theory which maps the KLM onto an effective Heisenberg model. The exchange integrals turn out to be functionals of the electronic self-energy guaranteeing self-consistency of our theory. The disordered electronic and magnetic moment systems are both treated by CPA-type methods. We discuss in detail the dependencies of the key-terms such as the long-range and oscillating effective exchange integrals, ‘the local-moment’ magnetization, the electron spin polarization, the Curie temperature as well as the electronic and magnonic quasiparticle densities of states on the concentration x of magnetic ions, the carrier concentration n, the exchange coupling J, and the temperature. The shape and the effective range of the exchange integrals turn out to be strongly x-dependent. The disorder causes anomalies in the spin spectrum especially in the low-dilution regime, which are not observed in the mean field approximation.  相似文献   

20.
The diffraction of low energy electrons from disordered overlayers adsorbed on ordered substrates is treated theoretically by an extension of Beeby's multiple scattering method. A lattice gas model is assumed for the disordered adsorbate layer. Multiple scattering within a certain area around each atom — each atom of the overlayer and within the ordered substrate — is treated self-consistently, the remaining contributions to the total scattering amplitude being averaged. The theory can be used in the limiting cases of random distribution and of long range order within the adsorbate layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号