首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A creep theory is presented to predict deformations at any specified time for a thick-walled cylinder subjected to internal pressure and axial load. The theory is based on the usual assumptions that the deformations are infinitestimal, that the material is incompressible and that the total strain theory is valid. The stress-strain-time relation for the material is assumed to be represented by an isochronous stress-strain diagram which is approximated by an arc hyperbolic sine function. The experimental part of the investigation included tests of thick-walled cylinders made of high-density poly-ethylene whose ratio of outside to inside radii were either 1.5 or 2.0. The test cylinders were either tested as closed-ented cylinders with internal pressure or subjected to a combination of internal pressure and axial load. Also, the application of the theory for varying load conditions was studied. Good agreement was found between theory and experiment.  相似文献   

2.
In the analysis of the bifurcation of thin orthotropic plates, the nonlinear terms associated with the third-order elastic constants are included in the stress-strain relation and large strain theory is used for the prebifurcation state. It is illustrated in an example that the second-order theory may affect considerably the buckling load (and mode).  相似文献   

3.
4.
A finite-element algorithm is proposed for the analysis of the thermoviscoelastoplastic stress-strain state of bodies under complex loading (thermal and mechanical). It is assumed that an arbitrary element of the body deforms along a rectilinear or slightly curved path. The three-dimensional stress-strain state of the body’s elements is determined using the iterative method of additional strains. The technique is tested by analyzing the three-dimensional viscoelastic stress-strain state of a hollow cylinder and the thermoplastic state of a disk __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 16–25, May 2006.  相似文献   

5.
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.  相似文献   

6.
A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 79–90, August 2008.  相似文献   

7.
针对导弹适配器的结构特征,分别建立了可压缩橡胶泡沫和不可压橡胶圆筒轴对称平面应变问题有限变形的平衡方程,基于Blatz-Ko应变能函数和三次缩减多项式应变能函数,得到了相应的位移和应力模式;在此基础上求解了适配器受压问题的非线性方程组和导弹发射时适配器所受到的摩擦力.算例分析与有限元数值模拟比较表明:解析解与数值解非常吻合,径向应力在发射筒内外表面误差最大为0.558%,周向应力在粘合面误差最大为0.246%,导弹发射时的最大量纲为一的摩擦力为1.0228.适配器径向应力在材料粘合交界面上最小,在适配器外表面最大,均为压应力;橡胶泡沫和不可压橡胶的周向应力均为压应力,橡胶泡沫的周向应力由内向外变大,不可压橡胶的周向应力由内向外变小.橡胶泡沫的径向受压大于周向受压,不可压橡胶的周向受压大于径向受压.研究不同过盈量对应力和摩擦力的影响表明:过盈量每增加0.0013,橡胶泡沫 层和不可压橡胶层的径向应力约增加0.13,不可压橡胶层的周向应力约增加2.14,而摩擦力约增加0.22.过盈量对不可压橡胶层的周向应力和导弹所受到的摩擦力影响非常大,对橡胶泡沫的径向应力有一定的影响,周向应力变化很小.  相似文献   

8.
The analysis of structures with “unilateral contact” boundary conditions is considered. The stress-strain relations are nonlinear and they are derived from a non quadratic strain energy density by “subdifferentiation”. It is proved that for the inequality constrained boundary value problem the “principles” of virtual and of complementary virtual work hold in an inequality form constituting a variational inequality. The theorems of minimum potential and complementary energy are proved to be valid to account for this type of boundary conditions. These theorems are used to formulate the analysis as a nonlinear programming problem. A numerical example of a structure having the “unilateral contact” boundary condition illustrates the theory.  相似文献   

9.
The oscillation and dissipative heating of an infinitely long piezoceramic cylinder polarized along the radius is considered in the case of partial heat depolarization, with harmonic quasi-static loading of the cylinder by a potential difference. The inner surface of the cylinder is thermally insulated; there is heat transfer at the outer surface. An analytical solution is obtained, and numerical calculations are performed for a TsTStBS-2 piezoceramic. The conditions in which the depolarized zone appears are examined, along with the stress-strain state of the cylinder. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 3, pp. 42–48, March, 1999.  相似文献   

10.
The process of intraocular pressure measurement by an optical analyzer is numerically modeled. The cornea and sclera are treated as axially symmetric deformable shells of revolution rigidly fixed along the edges; the space between the shells is filled with an incompressible liquid. The stress-strain state of the cornea and sclera is described by using a nonlinear theory of shells. The optical system is calculated on the basis of concepts of geometrical optics. Two types of boundary conditions are compared; for each of them, the relation between the pressure in the air jet and the area of the surface from which the reflected light is recorded by the photodetector is analyzed.  相似文献   

11.
A finite deformation theory of plane strain is formulated for transversely isotropic, homogeneous bodies with nonlinear stress-strain law. A new set of simplified field equations, which is valid in the case of some deviations from Hooke's law, is derived systematically with the help of the method of order estimation. For illustration purposes, a circular hole in a body under generalized plane strain is considered, together with the solution of an example problem by perturbation techniques.  相似文献   

12.
A nonlinear theory of continuously distributed dislocation and disclination type defects in elastic media with intrinsic rotational degrees of freedom and couple stresses is proposed. The mediumstrains are assumed to be finite. The solving equations of the continuum theory of defects are obtained by passing to the limit from a discrete set of isolated dislocations and disclinations to their continuous distribution. The notions of dislocation and disclination densities in a micropolar body under large deformations are introduced. Incompatibility equations are obtained and a boundaryvalue problem of equilibriumis posed for an elastic micropolar body with a given density of distributed defects. A nonlinear problem of determining the intrinsic stresses in a hollow circular cylinder due to a given distribution of disclinations is solved.  相似文献   

13.
This paper studies wave propagation in a soft electroactive cylinder with an underlying finite deformation in the presence of an electric biasing field.Based on a recently proposed nonlinear framework for electroelasticity and the associated linear incremental theory,the basic equations governing the axisymmetric wave motion in the cylinder,which is subjected to homogeneous pre-stretches and pre-existing axial electric displacement,are presented when the electroactive material is isotropic and incompressible.Exact wave solution is then derived in terms of(modified) Bessel functions.For a prototype model of nonlinear electroactive material,illustrative numerical results are given.It is shown that the effect of pre-stretch and electric biasing field could be significant on the wave propagation characteristics.  相似文献   

14.
15.
A practical theory for swaging bored holes within plates and cylinders is proposed which can take into account work-hardening in the presence of small plastic strains based upon equivalent stress-strain data. With the appropriate choice of yield function, this theory applies to the swaging of both thin and thick plates under respective plane stress and plane strain conditions. The theory can be adapted further to the autofrettage of open and closed-ended, thick-walled cylinders where similar plane deformations conditions apply. Here swaging refers to the practice in which an oversized plug or sphere is forced into the bore thereby expanding it permanently to leave a residual circumferential compression in the bore material upon removal of the expanding tool. A similar effect results from applying an initial over-pressure to a long thick-walled cylinder in an autofrettage process. Both treatments are employed to enhance the fatigue resistance when the service loading upon the disc or cylinder amounts to a cyclic, circumferential tension within its bore. Strain gauges bonded to the entry face of the plate are used to monitor the circumferential and radial strain distributions both during and after the swaging process. Experimental results presented for swaging of thin and thin annular discs in aluminium alloy show that the measured residual strain distributions concord with the theory for large discs with a 10/1 diameter ratio. The agreement is less satisfactory with the loss in axial symmetry for parallel-sided lugs with a width to hole diameter ratio of 4/1.  相似文献   

16.
This paper is concerned with investigating the asymptotic behavior of harmonic functions defined on a three-dimensional semi-infinite cylinder, where homogeneous nonlinear boundary conditions are imposed on the lateral surface of the cylinder. Such problems arise in the theory of steady-state heat conduction. The classical Phragmén-Lindelöf theorem states that harmonic functions which vanish on the lateral surface of the cylinder must either grow exponentially or decay exponentially with distance from the finite end of the cylinder. Here we show that the results are significantly different when the homogeneous Dirichlet boundary condition is replaced by the nonlinear heatloss or heat-gain type boundary condition. We show that polynomial growth (or decay) or exponential growth (or decay) may occur, depending on the form of the nonlinearity. Explicit estimates for the growth or decay rates are obtained.  相似文献   

17.
Nonlinear behavior of composite sandwich beams in three-point bending   总被引:1,自引:0,他引:1  
The load-deflection behavior of a composite sandwich beam in three-point bending was investigated. The beam was made of unidirectional carbon/epoxy facings and a polyvinyl chloride closed-cell foam core. The load-deflection curves were plotted up to the point of failure initiation. They consist of an initial linear part followed by a nonlinear portion. A nonlinear mechanics of materials analysis that accounts for the combined effect of the nonlinear behavior of the facings and core materials (material nonlinearity) and the large deflections of the beam (geometric nonlinearity) was developed. The theoretical predictions were in good agreement with the experimental results. It was found that the effect of material nonlinearity on the deflection of the beam is more pronounced for shear-dominated core failures in the case of short span lengths. It is due to the nonlinear shear stress-strain behavior of the core. For long span lengths, the observed nonlinearity is small and is attributed to the combined effect of the facings nonlinear stress-strain behavior and the large deflections of the beam.  相似文献   

18.
The structural theory of short-term damage is generalized to the case where the undamaged components of a particulate composite deform nonlinearly under loads that induce a compound stress state. The basis for this generalization is the stochastic elasticity equations for a particulate composite with porous components whose skeletons deform nonlinearly. Damage in a microvolume of the material is assumed to occur in accordance with the Huber-Mises failure criterion. Balance equations for damaged microvolume are derived for the physically nonlinear materials of the components. Together with the macrostress-macrostrain relationship for a particulate composite with porous nonlinear components, they constitute a closed-form system of equations. This system describes the coupled processes of physically nonlinear deformation and microdamage. Algorithms for calculating the microdamage-macrostrain relationship and plotting stress-strain curves are proposed. Such curves are plotted for the case where the composite is subjected to a combination of normal and tangential loads, and microdamages occur in the linearly hardened matrix and do not in the linearly elastic inclusions. The stress-strain curves are examined depending on the volume fraction of inclusions and presence of tangential stresses __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 48–57, December, 2006.  相似文献   

19.
This study provides a novel method for reconstructing real-time nonlinear wave forces on a large-scale circular cylinder by considering second-order wave effects. Potential theory is utilized for deriving the expression of wave forces with the measured data of wave elevation. Approximate expressions of quadratic transfer functions are built with undetermined coefficients, which are resolved by using the historical data of measured wave elevation. Two different algorithms, including fast Fourier transform (FFT) and recursive least squares (RLS), are adopted for real-time reconstruction. Hydrodynamic tests are conducted in the wave flume on a circular cylinder to examine the effectiveness of the nonlinear reconstruction method. Comparative results demonstrate that the accuracy of real-time reconstructed wave forces is significantly enhanced by the present method. The over-prediction errors at force crests and the under-prediction errors at force troughs have been reduced. Furthermore, comparative results show that the nonlinear method implemented by the FFT algorithm provides more accurate results, whereas the RLS algorithm is more time cost efficient.  相似文献   

20.
An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton’s principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different parameters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号