首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
$(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ $(x=0.07, 0.09, 0.16, 0.22, 0.31)$ films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The influence of Fe doping on the local structure of films was investigated by X-ray absorption spectroscopy (XAS) at Fe K-edge and L-edge. For the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.07, 0.09 \mbox{ and } 0.16$ , Fe ions dissolve into $\mathrm{In}_{2}\mathrm{O}_{3}$ and substitute for $\mathrm{In}^{3+}$ sites with a mixed-valence state ( $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ ) of Fe ions. However, a secondary phase of Fe metal clusters is formed in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.22 \mbox{ and } 0.31$ . The qualitative analyses of Fe-K edge extended X-ray absorption fine structure (EXAFS) reveal that the Fe–O bond length shortens and the corresponding Debye–Waller factor ( $\sigma^{2}$ ) increases with the increase of Fe concentration, indicating the relaxation of oxygen environment of Fe ions upon substitution. The anomalously large structural disorder and very short Fe–O distance are also observed in the films with high Fe concentration. Linear combination fittings at Fe L-edge further confirm the coexistence of $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ with a ratio of ${\sim}3:2$ ( $\mathrm{Fe}^{2+}: \mathrm{Fe}^{3+}$ ) for the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.16$ . However, a significant fraction ( ${\sim}40~\mbox{at\%}$ ) of the Fe metal clusters is found in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.31$ .  相似文献   

2.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

3.
The theoretical calculations indicated that the monoclinic low-temperature phase of silver telluride $(\upbeta \hbox {-Ag}_{2}\hbox {Te})$ is a new binary topological insulator with highly anisotropic single Dirac cone surface. We obtained $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ crystal ingots containing few grains by the Bridgman method. We also deposited thin films of tellurium, $\hbox {Ag}_{5}\hbox {Te}_{3}\hbox { and }(\hbox {Te+Ag}_{5}\hbox {Te}_{3})$ by thermal evaporation method. The Raman spectra of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ were measured at three excitation wave lengths: 633, 515 and 488 nm. The Raman active modes of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ are situated at frequencies below 300  $\hbox {cm}^{-1}$ while vibrations of other phases appear at higher frequencies.  相似文献   

4.
N,W codoped TiO 2 $\mathrm{TiO}_{2}$ nanorods were synthesized via a one-step hydrothermal method using ammonium metatungstate as the nitrogen and tungstate sources. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The results indicated that the N,W codoped TiO 2 $\mathrm{TiO}_{2}$ nanorods exhibited a higher photocatalytic activity under visible light irradiation compared with P25 and undoped TiO 2 $\mathrm{TiO}_{2}$ , because the codoping of N and W ions not only extended the visible light absorption but also promoted the separation of the photogenerated electrons and holes.  相似文献   

5.
In this work, we present a study of the magneto transport properties in magnetic multilayered structure $\text{ Ni }_{81}\text{ Fe }_{19}\text{/Zr }$ Ni 81 Fe 19 /Zr . The magnetic $(\text{ Ni }_{81}\text{ Fe }_{19})$ ( Ni 81 Fe 19 ) and non magnetic (Zr) layer thickness $(\mathbf{t}_\mathbf{NiFe}, \mathbf{t}_\mathbf{zr})$ ( t NiFe , t zr ) effects on the magneto resistance (MR) are discussed theoretically in the framework of the Johnson–Camley semi classical approach based on the Boltzmann transport equation. A comparison between calculated and measured MR is obtained. The observed MR ratio oscillates for Zr layer thickness with an average period of 7Å. A generally weak $\text{ MR }(\text{ t }_{\mathrm{NiFe}})$ MR ( t NiFe ) ratio for fixed $\mathbf{t}_\mathbf{zr}$ t zr is obtained and it shows a maxima peak of the MR with a value of 1.8 % located at $\mathbf{t}_\mathbf{NiFe}= 80$ t NiFe = 80 Å.  相似文献   

6.
Chemiluminescence experiments have been performed to assess the state of current $\mathrm{CO}_{2}^{*}$ kinetics modeling. The difficulty with modeling $\mathrm{CO}_{2}^{*}$ lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH? and CH2O?. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate $\mathrm{CO}_{2}^{*}$ emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the $\mathrm{CO}_{2}^{*}$ concentration. Two different wavelengths to capture $\mathrm{CO}_{2}^{*}$ were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband $\mathrm{CO}_{2}^{*}$ was in fact being captured, and not emission from other species such as CH? and CH2O?. As a baseline for time history and peak magnitude comparison, OH? emission was captured at 307 nm simultaneously with the two $\mathrm{CO}_{2}^{*}$ filters. The results from the two $\mathrm{CO}_{2}^{*}$ filters were consistent with each other, implying that indeed the same species (i.e., $\mathrm{CO}_{2}^{*}$ ) was being measured at both wavelengths. A first-generation kinetics model for $\mathrm{CO}_{2}^{*}$ and CH2O? was developed, since no comprehensively validated one exists to date. CH2O? and CH? were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the $\mathrm{CO}_{2}^{*}$ model was only fair, which necessitates future improvements for a better understanding of $\mathrm{CO}_{2}^{*}$ chemiluminescence as well as the kinetics of the ground state species.  相似文献   

7.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

8.
We study the photodissociation of trapped $\mathrm{H}_{2}^{+}$ ions by 248?nm light from an excimer laser. Our results are in good agreement with calculated populations and photodissociation cross sections of the involved vibrational levels and yield a determination of the ion cloud radius. These data are used to obtain a reliable estimate of the efficiency of the resonance-enhanced multiphoton dissociation (REMPD) scheme in our $\mathrm{H}_{2}^{+}$ vibrational spectroscopy experiment. We go on to estimate the expected signal-to-noise ratio and discuss future improvements of the experimental setup.  相似文献   

9.
It is shown that for every Archimedean MV-effect algebra M (equivalently, every Archimedean MV-algebra) there is an injective MV-algebra morphism into the MV-algebra of all multiplication operators between the zero and identity operator on $\ell_{2}(\mathcal{S}_{0})$ , where $\mathcal{S}_{0}$ is an ordering set of extremal states (state morphisms) on M.  相似文献   

10.
In this paper, we analyze the scalar mesons f 0(980) and f 0(1500) from the decays $\bar{B}^{0}_{s}\to f_{0}(980)\pi^{0},\allowbreak f_{0}(1500)\pi^{0}$ within Perturbative QCD approach. From the leading-order calculations, we find that (a) in the allowed mixing angle ranges, the branching ratio of $\bar{B}^{0}_{s}\to f_{0}(980)\pi^{0}$ is about (1.0~1.6)×10?7, which is smaller than that of $\bar{B}^{0}_{s}\to f_{0}(980)K^{0}$ (the difference is a few times even one order); (b) the decay $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ is better to distinguish between the lowest lying state or the first excited state for f 0(1500), because the branching ratios for two scenarios have about one-order difference in most of the mixing angle ranges; and (c) the direct CP asymmetries of $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ for two scenarios also exists great difference. In scenario II, the variation range of the value ${\mathcal{A}}^{\mathrm{dir}}_{CP}(\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0})$ according to the mixing angle in scenario II is very small, except for the values for mixing angles near 90° or 270°, while the variation range of ${\mathcal{A}}^{\mathrm{dir}}_{CP}(\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0})$ in scenario I is very large. Compared with the future data for the decay $\bar{B}^{0}_{s}\to f_{0}(1500)\pi^{0}$ , it is easy to determine the nature of the scalar meson f 0(1500).  相似文献   

11.
Growth of strongly textured $\mathrm{FeCO}_{3}$ thin films on substrates was achieved with ultrashort-pulsed laser deposition using 810-nm, 46-fs ablation pulses. The crystallinity and composition were verified with X-ray diffraction and Raman spectroscopy. Using Mössbauer spectroscopy, it is shown that the deposited $\mathrm{FeCO}_{3}$ thin films possess the film quality required for application in research of nuclear quantum optics. It is found that a relatively low substrate temperature is crucial for growing a strongly textured film of $\mathrm{FeCO}_{3}$ while avoiding decomposition of $\mathrm{FeCO}_{3}$ into $\mathrm{Fe}_{2}\mathrm{O}_{3}$ and $\mathrm{CO}_{2}$ . This supports the importance of the use of ultrashort-pulsed laser deposition in providing adatoms with high mobility for attaining good crystallinity. The surface morphology was characterized by surface profilometry, scanning electron microscopy and atomic force microscopy. It is found to be significantly affected by changing the ablation laser parameters, including laser fluence, pulse duration, and on-target spot size. The results show that the peak deposition flux must be below approximately 0.03 nm/pulse in order to grow a flat film.  相似文献   

12.
In this article, we study the masses and pole residues of the ${1\over2}^{\pm}$ flavor antitriplet heavy baryon states ( $\varLambda _{c}^{+}$ , $\varXi _{c}^{+},\varXi _{c}^{0})$ and ( $\varLambda _{b}^{0}$ , $\varXi _{b}^{0},\varXi _{b}^{-})$ by subtracting the contributions from the corresponding ${1\over2}^{\mp}$ heavy baryon states with the QCD sum rules, and observe that the masses are in good agreement with the experimental data and make reasonable predictions for the unobserved ${1\over2}^{-}$ bottom baryon states. Once reasonable values of the pole residues λ Λ and λ Ξ are obtained, we can take them as basic parameters to study the relevant hadronic processes with the QCD sum rules.  相似文献   

13.
We give a new way to derive branching rules for the conformal embedding $$(\hat{\mathfrak{sl}}_n)_m\oplus(\hat{\mathfrak{sl}}_m)_n\subset(\hat{\mathfrak{sl}}_{nm})_1. $$ In addition, we show that the category ${\mathcal{C}(\hat{\mathfrak{sl}}_n)_m^0}$ of degree zero integrable highest weight ${(\hat{\mathfrak{sl}}_n)_m}$ -representations is braided equivalent to ${\mathcal{C}(\hat{\mathfrak{sl}}_m)_n^0}$ with the reversed braiding.  相似文献   

14.
Using partially twisted boundary conditions we compute the Kπ semi-leptonic form factors in the range of momentum transfers $0\lesssim q^{2}\leq q^{2}_{\max}=(m_{K}-m_{\pi})^{2}$ in lattice QCD with N f =2+1 dynamical flavours. In this way we are able to determine $f_{+}^{K\pi}(0)$ without any interpolation in the momentum transfer, thus eliminating one source of systematic error. This study confirms our earlier phenomenological ansatz for the strange quark mass dependence of the scalar form factor. We identify and estimate potentially significant NNLO effects in the chiral expansion that guides the extrapolation of the data to the physical point. Our main result is $f_{+}^{K\pi}(0)=0.9599(34)(^{+31}_{-47})(14)$ , where the first error is statistical, the second error is due to the uncertainties in the chiral extrapolation of the lattice data and the last error is an estimate of potential discretisation effects.  相似文献   

15.
Cobalt–zinc nanoferrites with formulae Co $_{1-x}$ Zn $_{x}$ Fe $_{2}$ O $_{4}$ , where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant ( $\varepsilon $ ’) and dielectric loss tangent (tan $\delta )$ are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, $\varepsilon $ ’ and tan $\delta $ , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell–Wagner’s two-layer model and the hopping of charge between Fe $^{2+}$ and Fe $^{3+}$ . Further, a very high value of dielectric constant and a low value of tan $\delta $ are the prime achievements of the present work. The AC electrical conductivity ( $\sigma _\mathrm{AC})$ is studied as a function of temperature as well as frequency and $\sigma _\mathrm{AC}$ is observed to be increasing with the increase in temperature and frequency.  相似文献   

16.
The identification of the fougerite mineral responsible for the bluish-green shade of gleysols in aquifers as being the FeII???III oxyhydroxycarbonate $\text{GR}(\text{CO}_{3}^{2-})^*$ of formula, $[\text{Fe}^{\rm II}_{6x}\text{Fe}^{\rm III}_{6(1 - x)}\text{O}_{12}\text{H}_{2(7-3x)}]^{2+}\bullet[\text{CO}_{3}^{2-}\bullet3\text{H}_{2}\text{O}]^{2-}$ where the ferric molar ratio x = [FeIII/Fetotal] is restricted to the domain [1/3–2/3] induces to study the reactivity of the synthetic green rust for reducing some major pollutants. The oxidation within the solid compound $\text{GR}(\text{CO}_{3}^{2-})^*$ in the presence of nitrates is followed by miniaturized Mössbauer spectrometer (MIMOS). Ratio x = [FeIII/Fetotal] increases up to 0.67 where $\text{GR}(\text{CO}_{3}^{2-})^*$ transforms gradually into magnetite. This could well explain the composition variability of fougerite occurrences.  相似文献   

17.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

18.
We obtain explicit formulas for the semi-classical twists deforming the coalgebraic structure of $U({\mathfrak{sl}}_{3})$ and $U({\mathfrak{sl}}_{4})$ . In rank 2 and 3 the corresponding universal R-matrices quantize the boundary r-matrices of Cremmer–Gervais type defining Lie Frobenius structures on the maximal parabolic subalgebras in ${\mathfrak{sl}}_{n}$ .  相似文献   

19.
In the present work, we have studied the structural, dielectric, and electrical properties of a series of nanosized $\mathrm{ZnAl}_{2-2x}\mathrm{Y}_{2x}\mathrm{O}_{4}$ ( $x = 0.00$ , 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, and 0.10) system prepared by chemical coprecipitation method. Powder X-ray diffraction (XRD) was carried out to study the influence of $\mathrm{Y}^{3+}$ substitution on the crystal structure of these samples. High Resolution Transmission Electron Microscopy (HRTEM) images reveal the nanocrystalline nature of the samples. The Fourier Transform Infrared (FTIR) spectra confirmed the preference of $\mathrm{Y}^{3+}$ ions at the octahedral B site. The variation of dielectric constant and loss tangent (1 kHz to 1 MHz) at room temperature for all the samples show the normal behavior of spinel compounds. AC conductivity study reveals that the conduction is due to small polaron hopping. The electrical modulus analysis shows that nanocrystalline $\mathrm{ZnAl}_{2-2x}\mathrm{Y}_{2x}\mathrm{O}_{4}$ system exhibits non-Debye-type relaxation. The DC electrical resistivity measured in the temperature range 303–373 K was found to increase with temperature and yttrium content.  相似文献   

20.
Quasi solid state dye-sensitized solar cells (DSSCs) have been fabricated with electrolytes containing $\text{ I }^{-}/\text{ I }_{3}^{-}$ redox couple using 80 % hydrolyzed polyvinyl alcohol (PVA) doped with potassium iodide (KI) and a mixture of potassium iodide and tetrapropyl ammonium iodide ( $\text{ Pr }_{4}\text{ NI }$ ) salts. The quasi solid state gel polymer electrolytes were prepared using 1:1 ethylene carbonate (EC):propylene carbonate (PC) mixture. The solar cells have the structure of ITO/ $\text{ TiO }_{2}$ /N3-Dye/electrolyte/Pt/ITO. The conductivity of the electrolytes has been calculated from the bulk resistance value determined using the electrochemical impedance spectroscopy. The performance of the DSSCs has been studied by varying the concentration of the doping salts in the electrolyte and incident light intensity. The DSSC fabricated with the KI salt electrolyte containing 9.9 wt% PVA, 39.6 wt% EC, 39.6 wt% PC, 10.9 wt% KI $(+\text{ I }_{2})$ exhibited the best power conversion efficiency of 1.97 %. However, the DSSC with a double-salt electrolyte containing 9.9 wt% PVA: 39.6 wt% EC: 39.6 wt% PC: (6.5 wt% KI: 4.4 wt% $\text{ Pr }_{4}\text{ NI }$ ) ( $+\text{ I }_{2}$ ) exhibited a higher efficiency of 3.27% under $100 \text{ mW/cm }^{2}$ light intensity. The efficiency of this cell increased to 4.59 % under dimmer light of intensity of $54 \text{ mW/cm }^{2}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号