首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B1 field distribution and high signal-to-noise ratio (SNR).We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective.Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B1 and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm×24 μm.  相似文献   

2.
Rodent models of spinal cord injury (SCI) have been widely used in pre-clinical studies. Injuries may occur at different levels of the lumbar and thoracic cord, and the number of segments injured and their depths may vary along the spine. It is thereby challenging to build one universal RF coil that exhibits optimal performance for all spinal cord imaging applications, especially in an animal scanner with small in-bore space and limited hardware configurations. We developed an interchangeable RF coil system for a 9.4 T small animal MRI scanner, in which the users can select an optimal coil specialized for imaging specific parts of a rat spine. We also developed the associated animal management device for immobilization and positioning. The whole system allows ease of RF coil exchange, animal fixation, and positioning, and thus reduces the animal preparation time before the MRI scan significantly. Compared to a commercial general-purpose 2-cm-diameter coil that was used in our previous studies, the specialized coil optimized for Sprague-Dawley rat lumbar spinal cord imaging exhibits up to 2.4 times SNR improvement.  相似文献   

3.
Non-human primates (NHPs) are vital models for neuroscience research. These animals have been widely used in behavioral, electrophysiological, molecular, and more recently, multimodal neuroimaging and neuro-engineering studies. Several RF coil arrays have been designed for functional, high-resolution brain magnetic resonance imaging (MRI), but few have been designed to accommodate multimodal devices. In the present study, a 16-channel array coil was constructed for brain imaging of macaques at 3 Tesla (3 T). To construct this coil, a close-fitting helmet-shaped form was designed to host 16 coil loops for whole-brain coverage. This assembly is mountable onto stereotaxic head frame bars, and the coil functions while the monkey is in the sphinx position with a clear line of vision of stimuli presented from outside of the MRI system. In addition, 4 openings were allocated in the coil housing, allowing multimodal devices to directly access visual cortical regions such as V1-V4 and MT. Coil performance was evaluated in an anesthetized macaque by quantifying and comparing signal-to-noise ratios (SNRs), noise correlations, and g-factor maps to a vendor-supplied human pediatric coil frequently used for NHP MRI. The result from in vivo experiments showed that the NHP coil was well-decoupled, had higher SNRs in cortical regions, and improved data acquisition acceleration capability compared with a vendor-supplied human pediatric coil that has been frequently used in macaque MRI studies. Furthermore, whole-brain anatomic imaging, diffusion tensor imaging and functional brain imaging have also been conducted: the details of brain anatomical structure, such as cerebellum and brainstem, can be clearly visualized in T2-SPACE images; b0 SNR calculated from b0 maps was higher than the human pediatric coil in all regions of interest (ROIs); the time-course SNR (tSNR) map calculated for GRE-EPI images demonstrates that the presented coil can be used for high-resolution functional imaging at 3 T.  相似文献   

4.
The purpose of this study was to investigate the usefulness and feasibility of magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) (USPIO-enhanced MRI) for imaging inflammatory tissues. First, we investigated the relationship between the apparent transverse relaxation rate (R2*) and the concentration of USPIO by phantom studies and measured the apparent transverse relaxivity (r2*) of USPIO. Second, we performed animal experiments using a total of 30 mice. The mice were divided into five groups [A (n=6), B (n=6), C (n=6), sham control (n=6), and control (n=6)]. The mice in Groups A, B, C and control were subcutaneously injected with 0.1 ml of turpentine oil on Day 0, while those in the sham control group were subcutaneously injected with 0.1 ml of saline. The mice in Groups A, B, C and sham control were intraperitoneally injected with 200 μmol Fe per kilogram body weight of USPIO (28 nm in diameter) immediately after the first MRI study on Days 3, 5, 7 and 7, respectively, and those in the control group were not injected with USPIO. The second and third MRI studies were performed at 24 and 48 h after USPIO administration, respectively. The maps of R2* were generated from the apparent transverse relaxation time (T2*)-weighted images with six different echo times. The phantom studies showed that there was a linear relationship between R2* and the concentration of USPIO (r=0.99) and the r2* value of USPIO was 105.7 mM−1 s−1. There was a significant increase of R2* in inflammatory tissues in Group C at 24 h after USPIO administration compared with the precontrast R2* value. Our results suggest that USPIO-enhanced MRI combined with R2* measurement is useful for detecting inflammatory tissues.  相似文献   

5.
Quantification of the acute increases in blood-brain barrier (BBB) permeability that occur subsequent to experimental ischemic injury has been limited to single time-point, invasive methodologies. Although permeability can be qualitatively assessed to visualise regional changes during sequential studies on the same animal using contrast-enhanced magnetic resonance imaging (MRI), quantitative information on the magnitude of change is required to compare barrier function during sequential studies on the same animal or between different animals. Recently, improvements in MRI tracer kinetic models and in MR hardware design mean that an estimate of permeability in vivo can now be obtained with acceptable accuracy and precision. We report here the use of such methods to study acute changes following spontaneous reperfusion in an animal model of ischemia. We have obtained estimates of BBB permeability following spontaneous reperfusion, subsequent to forebrain ischemia by unilateral carotid injection of starch microspheres in the rat. T2*-weighted and diffusion-trace imaging were used to monitor the initial reduction in CBF and the time-course of ischemia, respectively. Following reperfusion, an intraveneous bolus of dimeglumine gadopentetate (Gd-DTPA) and horseradish peroxidase (HRP) was given during a continuous acquisition of T1 maps with a 48 s temporal resolution. Permeability maps were constructed using a 4-compartment model; K(trans), the permeability-surface area product of the capillary walls was estimated to be 9.2 +/- 0.6 x 10(-4) min(-1) in the cortex. Visualisation of the regional extent of HRP extravasation on histological sections following termination of the experiment demonstrated very little correspondence to the region of Gd-DTPA leakage. Quantitative MRI assessment of BBB permeability following ischemia-reperfusion is consistent with published values obtained by invasive methods. Differences between Gd-DTPA-enhancement and HRP may reflect differences in the molecular size of the tracers.  相似文献   

6.
Proper design of a birdcage coil plays a very important role in obtaining high-resolution small animal magnetic resonance imaging. The RF field homogeneity and the coil filling factor directly affect the signal-to-noise ratio (S/N) and therefore limit the resolution. It has been shown that a conductive end-cap placed on one side of the coil can improve the RF field inhomogeneity near this area. This also contributes to an increase in the S/N by reducing the length of the RF coil. While this is true near the end-cap, the distal half of the coil still suffers from poor homogeneity and S/N. Consequently, such a shortfall may hinder small animal whole body imaging. In order to improve the coil performance for a larger imaging volume, we designed a new small animal birdcage RF coil by adding a detachable second end-cap to the open end. The performance of single end and double end RF coils was compared experimentally. The results indicate that the double end-cap can provide superior uniformity along the long axis of the coil. Furthermore, if one wishes to obtain the same homogeneity within a given volume, a double end-cap would have less than half of the length of the single end-cap coil leading to a superior S/N performance.  相似文献   

7.
Three-dimensional (3D) twisted projection imaging (TPI) trajectory has a unique advantage in sodium (23Na) imaging on clinical MRI scanners at 1.5 or 3 T, generating a high signal-to-noise ratio (SNR) with a short acquisition time (∼10 min). Parallel imaging with an array of coil elements transits SNR benefits from small coil elements to acquisition efficiency by sampling partial k-space. This study investigates the feasibility of parallel sodium imaging with emphases on SNR and acceleration benefits provided by the 3D TPI trajectory. Computer simulations were used to find available acceleration factors and noise amplification. Human head studies were performed on clinical 1.5/3-T scanners with four-element coil arrays to verify simulation outcomes. In in vivo studies, proton (1H) data, however, were acquired for concept–proof purpose. The sensitivity encoding (SENSE) method with the conjugate gradient algorithm was used to reconstruct images from accelerated TPI-SENSE data sets. Self-calibration was employed to estimate coil sensitivities. Noise amplification in TPI-SENSE was evaluated using multiple noise trials. It was found that the acceleration factor was as high as 5.53 (corresponding to acceleration number 2×3, ring-by-rotation), with a small image error of 6.9% when TPI projections were reduced in both polar (ring) and azimuthal (rotation) directions. The average noise amplification was as low as 98.7%, or 27% lower than Cartesian SENSE at that acceleration factor. The 3D nature of both TPI trajectory and coil sensitivities might be responsible for the high acceleration and low noise amplification. Consequently, TPI-SENSE may have potential advantages for parallel sodium imaging.  相似文献   

8.
Magnetic resonance imaging (MRI) is well suited for small animal model investigations to study various human pathologies. However, the assessment of microscopic information requires a high-spatial resolution (HSR) leading to a critical problem of signal-to-noise ratio limitations in standard whole-body imager. As contrast mechanisms are field dependent, working at high field do not allow to derive MRI criteria that may apply to clinical settings done in standard whole-body systems. In this work, a contrast-enhanced dynamic MRI protocol with improved spatial and time resolution was used to perform in vivo tumor model imaging on the mouse at 1.5 T. The needed sensitivity is provided by the use of a 12-mm superconducting surface coil operating at 77 K. High quality in vivo images were obtained and revealed well-defined internal structures of the tumor. A 3-D HSR sequence with voxels of 59x59x300 microm3 encoded within 6.9 min and a 2-D sequence with subsecond acquisition time and isotropic in-plane resolution of 234 microm were used to analyze the contrast enhancement kinetics in tumoral structures at long and short time scales. This work is a first step to better characterize and differentiate the dynamic behavior of tumoral heterogeneities.  相似文献   

9.
作为一种高灵敏度且具有定量测量能力的功能分子影像技术,小动物PET越来越广泛地用于各种生物医学研究,例如疾病动物模型研究、新药物研发和新治疗方法评估等。首先回顾小动物PET成像系统的发展历史、效率和空间分辨率等性能的改进和产业化;其次,讨论了影响PET空间分辨率和效率的各种因素,包括晶体大小、探测器几何、正电子射程、光子非共线效应、图像重建算法和阻碍PET系统同时达到高空间分辨率和高效率的相互作用深度不确定效应;最后,介绍了小动物PET成像系统在以下几个方面的取得的最新进展:(1)高密度、小的光衰减常数和高光产额的闪烁晶体;(2)体积小、增益大、时间性能好、工作电压低和磁兼容的新型硅光电倍增管光探测器;(3)各种深度测量PET探测器,详细介绍了一个可达到分辨0.43 mm×0.43 mm×20 mm晶格和达到2.4 mm深度分辨率的双端读出探测器;(4)使用深度测量探测器的小动物PET成像系统,详细介绍了一个使用高分辨率双端读出探测器,全视野达到0.55 mm平均位置分辨率的小动物PET原型系统;(5)磁兼容插件式小动物PET成像系统和PET/MRI同时成像的优点;(6)小动物PET图像重建和数据校正的特点、传统的滤波反投影算法和新的迭代算法的优缺点和PET图像重建算法未来的发展方向。As the most sensitive and quantitative molecular imaging technique,small animal positron emission tomography (PET) has become a widely used tool in biomedical research such as in animal model of human disease,development of new drugs and the evaluation of new therapeutics.In this paper,first the history,the efforts to improve the spatial resolution and sensitivity as well as the commercialization process of small animal PET scanner are reviewed.Then the factors that affect the spatial resolution and sensitivity of PET scanner such as crystal size,detector geometry,positron range,photon noncollinearity and imaging reconstruction are discussed in detail.The depth of interaction effect which hinders the simultaneous achievement of PET spatial resolution and sensitivity are also discussed.Finally the recent progress made in the following areas of small animal PET instrumentation are introduced:(1) high density,short light decay constant and bright scintillator,(2) compact,high gain,good timing resolution,low bias voltage and MRI compatible silicon photomultiplier,(3) depth encoding detectors by using different methods,a detector using dual-ended readout,identifying 0.43 mm×0.43 mm×20 mm crystals and achieving a 2.4 mm depth of interaction resolution was introduced in detail,(4) small animal PET scanners using depth encoding detectors,a prototype scanner using high resolution dualended readout detectors and achieving an average of 0.55 mm spatial resolution in the whole field of view was introduced in detail.(5) MRI compatible small animal PET inserts and the advantage of simultaneous PET/MRI imaging,(6) image reconstruction and data correction of small animal PET,the filter back projection and iterative reconstruction algorithms are compared and a few key directions of PET image reconstruction will be presented.  相似文献   

10.
A whole-body small animal radiofrequency coil was designed and built for use with a 0.35 Tesla clinical magnetic resonance imager. The primary motivation for this work was to evaluate the effectiveness of this system for small animal magnetic resonance imaging of tumor-bearing mice. This noninvasive technique is shown to provide high resolution whole-body images of mice, to be capable of detecting intra-organ tumors, and to be useful for evaluating tumor size and growth. Its potential for monitoring response to experimental therapeutic regimens is also noted. Two tumor models were examined--colon adenocarcinoma MCA-38 and human ASPC-1 pancreatic adenocarcinoma.  相似文献   

11.
PurposeHypoxia is an important marker for resistance to therapy. In this study, we quantify the macroscopic effects of R2* mapping in prostate cancer patients incorporating susceptibility matching and field strengths effects.Materials and methods91 patients were scanned without endorectal coil (ERC) at 3 T. Only when rectal gas was absent, data was included for analysis. Another group of 10 patients was scanned using a susceptibility matched ERC. To assess the residual contamination of R2 and macroscopic field non-uniformities, a group of 10 patients underwent ultra-high resolution 7 T MRI.ResultsOf the patients scanned at 3 T 60% presented rectal gas and were excluded, due to susceptibility artifacts. At 3 T the tumor was significantly different (P < 0.01) from the healthy surrounding tissue in R2* values at intrapatient level. Using the measured median R2* value of 24.9 s 1 at 3 T and 43.2 s 1 at 7 T of the peripheral zone, the minimum contribution of macroscopic susceptibility effects is 15% at 3 T.ConclusionR2* imaging might be a promising tool for hypoxia imaging, particularly when minimizing macroscopic susceptibility effects contaminating intrinsic R2* of tissue, such as rectal gas. At 3 T macroscopic effects still contribute 15% in the R2* value, compared to ultra-high resolution R2* mapping at 7 T.  相似文献   

12.
In this paper we present the spatial resolution enhancement and noise reduction level achieved with an optimized inductively coupled surface coil specifically designed for our experiments. The technique of designing and implementing customized coils for magnetic resonance imaging of very small structures is described. We have designed a low cost prototype of an inductively coupled circular surface coil, tuned for 1H magnetic resonance imaging at 200 MHz. The coil is mounted on a customized teflon support. The inductive coupling used in this coil improves the signal-to-noise ratio by reducing various loss mechanisms (specially the dielectric losses). Test images have been acquired to determine the evolution of induced articular lesions in a rabbit animal model, as well as brain tumors in rats. The images show high spatial resolution, excellent B1 field homogeneity and no “hot spots”. Comparing these images with those acquired with conventional coils, one finds better spatial resolution and signal-to-noise ratio, as well as larger field of view with less intense illumination artifact. The methodology can be used in any application that requires high quality imaging of small structures.  相似文献   

13.
The signal-to-noise ratio (SNR) performance and practicality issues of a four-element phased-array coil and an implantable coil system were compared for rat spinal cord magnetic resonance imaging (MRI) at 7 T. MRI scans of the rat spinal cord at T10 were acquired from eight rats over a 3 week period using both coil systems, with and without laminectomy. The results demonstrate that both the phased array and the implantable coil systems are feasible options for rat spinal cord imaging at 7 T, with both systems providing adequate SNR for 100-mum spatial resolution at reasonable imaging times. The implantable coils provided significantly higher SNR, as compared to the phased array (average SNR gain of 5.3x between the laminectomy groups and 2.5x between the nonlaminectomy groups). The implantable coil system should be used if maximal SNR is critical, whereas the phased array is a good choice for its ease of use and lesser invasiveness.  相似文献   

14.
MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.  相似文献   

15.
High speed switching of current in gradient coils within high magnetic field strength magnetic resonance imaging (MRI) scanners results in high acoustic sound pressure levels (SPL) in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. In the work presented here a computational vibro-acoustic model was developed based on an iteratively modified and validated finite element (FE) model to characterize the acoustic noise properties of the gradient coil. The simulation results from the computational model were verified through experimental noise measurement for the gradient coil insert in a 4 T MRI scanner by using swept sinusoidal time waveform inputs. Comparisons show that the computational model predicts the noise characteristic properties extremely accurately. There are three dominant frequency bands where the SPL is much higher than those at other frequencies. The SPL in the horizontal direction is much higher than that in the vertical direction due to the excitation to the horizontally placed X coil. The SPL to the inner surface of the coil is higher than far from the inner surface, which proves that the acoustic noise is radiated from the inner surface and primarily caused by the normal vibration of the inner surface. Further verification was conducted by using two types of trapezoidal sequence inputs usually used, which is to simulate real scanning sequences for small animals. Again the accuracy of the developed model is verified. The validated acoustic computational model could be used as an effective method to predict the noise that would be produced by a coil in the design stage. Modification of the structural design or the excitation pulse could be performed to reduce the acoustic noise when the gradient coil is in scanning.  相似文献   

16.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

17.
Study of human pathologies and acquisition of anatomical images without any surgical intervention inside human body is possible because of magnetic resonance imaging (MRI), which is the keystone technique to characterize the psychology and neurochemistry of human body. However, for clinical trials, the study and cure of human diseases are followed by medical investigations of different animal anatomies. By employing different imaging techniques to animal anatomical models during their clinical trials yielded in exceptional image acquisition without any surgical invasion in the model, which resulted in noninvasive technique as compared to surgical invasion and opened the possibility to study human pathologies more precisely. This work exploits the notable properties of unique combination of multi-circular hybridized surface coils which can be used as hybridized magnetic metamaterial hat (HMMH). HMMH not only strengthens the uniformity of radio frequency (RF) rotational symmetry around its axis but also improves the signal-to-noise ratio (SNR) for rat’s brain imaging at 7-T MRI. We analyzed a periodic array of strongly coupled circular copper coils attached on circular coil shaped printed circuit board (PCB) substrate. In the design, some copper coils were inspired by the slot cavity loaded with parametric elements (capacitor and inductor). In addition, coils in the form of HMMH exploited the advantages of the hybrid modes which exhibited better and deeper RF sensitivity into the region of interest (ROI) as compared to single loop RF coil by exciting two Eigen modes simultaneously which resulted in homogenized magnetic field (B-field) and enhanced SNR at ROI. At resonance, the value of relative negative permeability, μ r  = ?7 + j11 was achieved at 300 MHz for 7-T MRI. Furthermore, image quality at ROI was optimized by varying rat’s head position under magnetic resonance (MR) coil of MRI apparatus and in the presence or absence of HMMH. Design configuration and circuit model analysis were also done.  相似文献   

18.
In typical MRI applications the dominant noise sources in the received signal are the sample, the coil loop and the preamplifier. We hypothesize that in some cases (e.g. for very small receiver coils) the matching network noise has to be considered explicitly. Considering the difficulties of direct experimental determinations of the noise factor of matching networks with sufficient accuracy, it is helpful to estimate the noise factor by calculation. A useful formula of the coil matching network is obtained by separating commonly used coil matching network into different stages and calculating their noise factor analytically by a combination of the noise from these stages. A useful formula of the coil matching network is obtained. ADS simulations are performed to verify the theoretical predictions. Thereafter carefully-designed proof-of-concept phantom experiments are carried out to qualitatively confirm the predicted SNR behavior. The matching network noise behavior is further theoretically investigated for a variety of scenarios. It is found that in practice the coil matching network noise can be improved by adjusting the coil open port resonant frequency.  相似文献   

19.
Cardiac MRI of small animal models of cancer radiation therapy (RT) is a valuable tool for studying the effect of RT on the heart. However, standard cardiac MRI exams require long scanning times, which is challenging for sick animals that may not survive extended periods of imaging under anesthesia. The purpose of this study is to develop an optimized, fast MRI exam for comprehensive cardiac functional imaging of small-animal models of cancer RT. Ten adult female rats (2 non-irradiated and 8 irradiated) were scanned using the developed exam. Optimal imaging parameters were determined, which minimized scanning time while ensuring measurement accuracy and avoiding imaging artifacts. This optimized, fast MRI exam lasted for 30 min, which was tolerated by all animals. EF was normal in all imaged rats, although it was significantly increased in the irradiated rats, which also showed ventricular hypertrophy. However, myocardial strain was significantly reduced in the irradiated rats. In conclusion, a fast MRI exam has been developed for comprehensive cardiac functional imaging of rats in 30 min, with optimized imaging parameters to ensure accurate measurements and tolerance by irradiated rats. The generated strain measurements provide an early marker of regional cardiac dysfunction before global function is affected.  相似文献   

20.
A new method for acquiring MR data in two dimensions is described. This is achieved by combining coils into an array so as to produce a unique local magnetic field within each coil when placed within the B(0) field of a standard MRI scanner. In this way each known location of a coil is associated with a unique resonant frequency. Each coil now represents a location of a pixel in the plane, and after Fourier transformation of the signal the resulting frequency spectrum gives immediately the spin distribution in the plane of the array. In effect, the two-dimensional spatial distribution is frequency encoded without the use of switched gradients or phase encoding. As only static fields are used, this technique offers the potential of fast imaging. Furthermore, signals from different locations would also be inherently time-registered. Initial experiments to demonstrate the principle are described, using a square array of 5 by 5 coils. The currents in the coils were determined by using a genetic algorithm. Echoes from pellet phantoms placed in the array were acquired using standard spin-echo sequences with gradients switched off. The results are promising, with the spectra showing generally good resolution between peaks, enabling localisation in up to half the pixels. Technical difficulties are discussed and possible applications are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号