首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
Nitrogen and lanthanum co-doped titania photocatalysts were prepared by a modified sol–gel process with urea and lanthanum nitrate doping precursors and characterized by various techniques including XRD, FTIR, TEM, EDS, and UV–Vis DRS. The average crystallite size was ca. 12–15 nm as calculated from XRD patterns, and anatase was the dominant crystalline type in the as-prepared samples. The UV–Vis DRS of the samples revealed significant absorption within the range of 400–500 nm. The optimum composition of N(0.020)La(0.012)TiO2 exhibited the highest photocatalytic activity for degradation of methyl orange (MO) aqueous solution under simulated sunlight. The percent degradation of MO was ca. 97% for N(0.020)La(0.012)TiO2 under simulated sunlight irradiation for 9 h. The enhanced photocatalytic activity was ascribed to the synergistic effects of the nitrogen and lanthanum co-doping.  相似文献   

2.
The poly(o-anisidine)–sulfuric acid–glucose oxidase (POA–H2SO4–GOx) electrode has been investigated in the present work. Platinum electrode was used for the synthesis of poly (o-anisidine)–sulfuric acid (POA–H2SO4) film using galvanostatic method with 0.2 M o-anisidine, 1.0 M H2SO4 solution, 1.0 pH and 2 mA/cm2 applied current density. The synthesized film was characterized using electrochemical technique, conductivity measurement, UV–visible spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. GOX was immobilized on synthesized POA–H2SO4 film by cross-linking via glutaraldehyde in phosphate and acetate buffer. The Michaelis–Menten constant ( K\textm¢K_{\text{m}}^\prime ) was determined for the immobilized enzyme. The glucose oxidase electrode shows the maximum current response at pH 5.5 and potential 0.6 V. The sensitivity of POA–H2SO4–GOX electrode in phosphate and acetate buffer has been recorded. The results of this study reveal that the phosphate buffer gives fast response as compared to acetate buffer in amperometric measurements.  相似文献   

3.
A 20% GdO1.5 doped ceria solid solution with a small amount of MnO2 doping (≤5% molar ratio) was prepared via the mixed oxide method from high-purity commercial powders with grain size around 0.2–0.5 μm. X-ray diffraction analysis indicated that all the samples exhibited the fluorite structure, and no new phase was found. The data from dilatometeric measurements and scanning electron microscopy observations revealed that 1% Mn doping reduced the sintering temperature by over 150 °C, and enhanced the densification and grain growth. Mn doping has little effect on grain interior conductivity, but a marked deterioration in grain boundary behavior is observed. This leads to a lower total conductivity in comparison with the undoped Ce0.8Gd0.2O2–δ. Therefore, for solid oxide fuel cells (SOFCs) with Mn-containing compounds as electrodes, optimization of electrode fabrication conditions is needed to prevent the formation of a lower conductivity layer at the electrode/electrolyte interface since Mn will diffuse from the electrode side to the electrolyte during fabrication and operation of SOFCs. Electronic Publication  相似文献   

4.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

5.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

6.
Ba1−x Sr x TiO3(x = 0–0.5, BST) nanofibers with diameters of 150–210 nm were prepared by using electrospun BST/polyvinylpyrrolidone (PVP) composite fibers by calcination for 2 h at temperatures in the range of 650–800 °C in air. The morphology and crystal structure of calcined BST/PVP nanofibers were characterized as functions of calcination temperature and Sr content with an aid of XRD, FT-IR, and TEM. Although several unknown XRD peaks were detected when the fibers were calcined at temperatures less than 750 °C, they disappeared with increasing the temperature (above 750 °C) due to its thermal decomposition and complete reaction in the formation of BST. In addition, the FT-IR studies of BST/PVP fibers revealed that the intensities of the O–H stretching vibration bands (at 3430 and 1425 cm−1) became weaker with increasing the calcination temperature and a broad band at 540 cm−1, Ti–O vibration, appeared sharper and narrower after calcination above 750 °C due to the formation of metal oxide bonds. However, no effect of Sr content on the crystal structure of the composites was detected.  相似文献   

7.
Ferroelectric thin films of Nd and Mn co-doped bismuth titanate, Bi3.15Nd0.85Ti3−x Mn x O12 (BNTM) (x = 0–0.1), were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a sol–gel technique. The BNTM films had a polycrystalline perovskite structure and uniform and dense surface morphologies. A lattice distortion was observed in the BNTM films due to Mn ion doping. The ferroelectric measurement of the films indicated that the values of coercive field (E c ) decreased gradually with the increase of the Mn content (x), however, the remanent polarization (P r ) increase firstly and then decrease with the increase of x. The sample with x = 0.05 had optimum electrical properties and a maximum 2P r value. The 2P r and 2E c values of the film at a maximum applied electric field of 400 kV/cm were 38.3 μC/cm2 and 180 kV/cm, respectively. Moreover, this BNTM capacitors did not show fatigue behaviors after 1.0 × 1010 switching cycles at a frequency of 1 MHz, suggesting a fatigue-free character. The main reason for the increase of the 2P r and the decrease of the 2E c might be attributed to the lattice distortion in BNTM films due to Mn ion doping.  相似文献   

8.
The effect of fluorine doping on the electrochemical performance of LiFePO4/C cathode material is investigated. The stoichiometric proportion of LiFe(PO4)1−x F3x /C (x = 0.01, 0.05, 0.1, 0.2) materials was synthesized by a solid-state carbothermal reduction route at 650 °C using NH4F as dopant. X-ray diffraction, scanning electron microscope, energy-dispersive X-ray, and X-ray photoelectron spectroscopy analyses demonstrate that fluorine can be incorporated into LiFePO4/C without altering the olivine structure, but slightly changing the lattice parameters and having little effect on the particle sizes. However, heavy fluorine doping can bring in impurities. Fluorine doping in LiFePO4/C results in good reversible capacity and rate capability. LiFe(PO4)0.95 F0.15/C exhibits highest initial capacity and best rate performance. Its discharge capacities at 0.1 and 5 C rates are 156.1 and 119.1 mAh g−1, respectively. LiFe(PO4)0.95 F0.15/C also presents an obviously better cycle life than the other samples. We attribute the improvement of the electrochemical performance to the smaller charge transfer resistance (R ct) and influence of fluorine on the PO43− polyanion in LiFePO4/C.  相似文献   

9.
The α-Fe2O3 fibers have been prepared by electrospinning the corresponding sol–gel precursor, then these fibers were characterized by TGA, SEM, XRD, BET and FT-IR respectively, indicating that the hierarchical α-Fe2O3 nanostructured fibers came into being. Photocatalytic degradation of methylene blue (MB) in water was carried out under ultraviolet (UV) light, showing that the fibers had better efficiency for removing MB than other catalysts. And several process parameters have also been studied, which showed that the removal effect of MB was influenced by the process parameters, such as the initial dye concentration, catalyst amounts, inorganic anions, and so on.  相似文献   

10.
LiMnPO4, with a particle size of 50–150 nm, was prepared by oleic acid-assisted solid-state reaction. The materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the materials were investigated by galvanostatic cycling. It was found that the introduction of oleic acid in the precursor led to smaller particle size and more homogeneous size distribution in the final products, resulting in improved electrochemical performance. The electrochemical performance of the sample could be further enhanced by Co doping. The mechanism for the improvement of the electrochemical performance was investigated by Li-ion chemical diffusion coefficient ( [(D)\tilde]\textLi ) \left( {{{\tilde{D}}_{\text{Li}}}} \right) and electrochemical impedance spectroscopy measurements. The results revealed that the [(D)\tilde]\textLi {\tilde{D}_{\text{Li}}} values of LiMnPO4 measured by cyclic voltammetry method increase from 9.2 × 10−18 to 3.0 × 10−17 cm2 s−1 after Co doping, while the charge transfer resistance (R ct) can be decreased by Co doping.  相似文献   

11.
The catalytic activity of dioxo-molybdenum(VI)-dichloro[4,4′-dicarboxylato-2,2′-bipyridine] covalently anchored through the carboxylate function to the surface of TiO2 has been tested for the oxidative degradation of 1-chloro-4-ethylbenzene in MeCN solution under argon and UV irradiation (λ = 254 nm). After 4–5 h of photochemical reaction, the Mo complex was reoxidized in the presence of O2 in the dark, and then the reaction was continued under argon. The reaction proceeds by the intermediate formation of 4′-chloroacetophenone that undergoes further decomposition to chlorobenzene, plus small amounts of oxygen-containing organochlorine compounds, CO2 and H2O. Similar results were obtained for the decomposition of 4′-chloroacetophenone under the same conditions, which also gave chlorobenzene as one of the main products. The ratio of [final product]/[Mo complex] increases during the decomposition of 1-chloro-4-ethylbenzene (up to 350–400% for 30–35 h of reaction), which provides evidence of a catalytic process. The probable photochemical reactions are discussed.  相似文献   

12.
Homogeneous manganocolumbite (MnNb2O6) was synthesized from Nb2O5 and MnO oxides. Powder sample was orthorhombic with unit cell parameters: α = 0.5766 nm, b = 1.4439 nm, c = 0.5085 nm and V = 0.4234 nm3. Heat capacity over the temperature range of 313–1253 K was measured in an inert atmosphere with combined thermogravimetry and calorimetry using NETZSCH STA 449C Jupiter thermoanalyzer. Melting point was 1767 ± 3 K, enthalpy of melting was 144 ± 4 kJ mol−1. Experimental heat capacity of MnNb2O6 is fitted to polynomial C pm = 221.46 + 3.03 · 10−3 T + −39.79 · 105 T −2 + 40.59 · 10−6 T 2.  相似文献   

13.
In this work, various TiO2 and TiO2 doped with 0.1, 1.0, and 5.0 mol% of Zn were prepared by the sol–gel method varying different hydrolysis catalysts (HNO3, OHAc, H3PO4) in order to be used as photocatalysts for environmental applications. The X-ray diffraction results showed that the different TiO2 samples have presented the anatase as main phase, However, the acid nature has played an important role in the superficial and optical properties. The N-physisortion analysis has revealed that the specific surface area of calcined TiO2 samples prepared using H3PO4, HOAc, and HNO3 was 245, 100, and 90 m2 g−1, respectively, while the spectroscopic UV analysis, the band gap energy has shifted by 3.3–3.0 eV. In order to improve the optical properties of TiO2, the last preparation was doped with different zinc concentrations. The result showed that, as the Zn concentration increase by 0.1–5.0 mol%, the surface area increased from 90 to 120 m2 g−1. Nevertheless, the E g returned from 3.0 to 3.32. The SEM analyses have not revealed important morphological changes between no doped and doped materials. The catalytic activity of the composite was studied on the photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid (2,4-D) and the activity results showed that small Zn concentrations decrease the t 1/2 in 28 min.  相似文献   

14.
Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel   总被引:1,自引:0,他引:1  
Sun is the Earth’s ultimate and inexhaustible energy source. One of the best routes to remedy the CO2 problem is to convert it to valuable hydrocarbons using solar energy. In this study, CO2 was photocatalytically reduced to produce methanol, methane and ethylene in a steady-state optical-fiber reactor under artificial light and real sunlight irradiation. The photocatalyst was dip-coated on the optical fibers that enable the light to transmit and spread uniformly inside the reactor. The optical-fiber photoreactor, comprised of nearly 120 photocatalyst-coated fibers, was designed and assembled. The XRD spectra indicated the anatase phase for all photocatalysts. It is found that the methanol yield increased with UV light intensity. A maximum methanol yield of 4.12 μmole/g-cat h is obtained when 1.0 wt% Ag/TiO2 photocatalyst was used under a light intensity of 10 W/cm2. When mixed oxide, TiO2–SiO2, is doped with Cu and Fe metals, the resulting photocatalysts show substantial difference in hydrocarbon production as well as product selectivity. Methane and ethylene were produced on Cu–Fe loaded TiO2–SiO2 photocatalyst. Since dye-sensitized Cu–Fe/P25 photocatalyst can fully harvest the light energy of 400–800 nm from sunlight, its photoactivity was significantly enhanced. Finally, CO2 photoreduction was studied by in situ IR spectroscopy and possible mechanism for the photoreaction was proposed.  相似文献   

15.
For studying the adiabatic and nonadiabatic mechanisms of the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → 2Cl (2 P u) + O2 (X 3Σ g ) reaction (1) and the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → Cl2 (X 1Σ g +) + O2 (X 3Σ g ) reaction (2), we calculated, by partial geometry optimizations under the C2 constraint, the O–O and O–Cl dissociation potential energy curves (PECs) from the five low-lying states of ClOOCl at the CASPT2 level. The CASSCF minimum-energy crossing point (MECP) between the potential energy surfaces of the 1 1A ground state [correlating with the product of reaction (1)] and the 1 3B state [correlating with the product of reaction (2)] states was also determined. Based on the CAS calculation results (PECs, energies, and spin–orbit coupling at the MECP), we predict that reaction (1) occurs along pathway 1: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 2Cl (2 P u) + O2 (X 3Σ g ) and that reaction (2) occurs along pathway 2: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 1 1A/1 3B MECP (142.4 cm−1) → ClOOCl (1 3B) → Cl2 (X 1Σ g +) + O2 (X 3Σ g ). The needed energies (relative to the reactant) for pathways 1 and 2 are predicted to be 5.3 and 11.1 kcal/mol, respectively, which indicates that reaction (1) is more favorable than reaction (2). The present work supports the traditional photochemical model for ozone degradation: ClOOCl (1 1A), formed by two ClO (X 2Π), can directly produce O2 plus two Cl atoms.  相似文献   

16.
The structure, spectroscopic, and electrochemical properties of [Co{(BA)2pn}(L)2]ClO4 complexes, where (BA)2pn = N,N′-bis(benzoylacetone)-1,3-propylenediimine dianion and the two ancillary ligands (L) are pyridine, py (1), and 4-methylpyridine, 4-Mepy (2), have been investigated. These complexes have been characterized by elemental analyses, IR, UV–Vis and 1H-NMR spectroscopy. The crystal structure of [Co{(BA)2pn}(py)2]ClO4 (1) has been determined by X-ray diffraction. The coordination geometry around cobalt(III) is best described as a distorted octahedron. The electrochemical reduction of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to CoIII–CoII is electrochemically irreversible, which is accompanied by the dissociation of the axial N(py)–cobalt bonds. This process becomes quasi-reversible upon the addition of excess py ligands. The second reduction step of CoII/I shows reversible behavior and is not influenced by the nature of the axial ligands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Deficiency in the A sublattice of perovskite-type Sr1– y Fe0.8Ti0.2O3–δ (y=0–0.06) leads to suppression of oxygen-vacancy ordering and to increasing oxygen ionic conductivity, unit cell volume, thermal expansion, and stability in CO2-containing atmospheres. The total electrical conductivity, predominantly p-type electronic in air, decreases with increasing A-site deficiency at 300–700 K and is essentially independent of the cation vacancy concentration at higher temperatures. Oxygen ion transference numbers for Sr1– y Fe0.8Ti0.2O3–δ in air, estimated from the faradaic efficiency and oxygen permeation data, vary in the range from 0.002 to 0.015 at 1073–1223 K, increasing with temperature. The maximum ionic conductivity was observed for Sr0.97Fe0.8Ti0.2O3–δ ceramics. In the system Sr0.97Fe1– x Ti x O3–δ (x=0.1–0.6), thermal expansion and electron-hole conductivity both decrease with x. Moderate additions of titanium (up to 20%) in Sr0.97(Fe,Ti)O3–δ result in higher ionic conductivity and lower activation energy for ionic transport, owing to disordering in the oxygen sublattice; further doping decreases the ionic conduction. It was shown that time degradation of the oxygen permeability, characteristic of Sr(Fe,Ti)O3–δ membranes and resulting from partial ordering processes, can be reduced by cycling of the oxygen pressure at the membrane permeate side. Thermal expansion coefficients of Sr1– y Ti1– x Fe x O3–δ (x=0.10–0.60, y=0–0.06) in air are in the range (11.7–16.5)×10–6 K–1 at 350–750 K and (16.6–31.1)×10–6 K–1 at 750–1050 K. Electronic Publication  相似文献   

18.
LiVPO4F/C composites with better electrochemical performance were prepared by calcination of LiF and amorphous vanadium phosphorus oxide (VPO) intermediate synthesized by a sol–gel method using H3PO4, V2O5 and citric acid as raw materials. The properties of LiVPO4F/C composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The analysis of XRD patterns and Fourier transform infrared spectra (FTIR) reveal that VPO intermediate prepared by sol–gel method is amorphous and VPO4 may exist in VPO intermediate. The compositions of LiVPO4F/C composites are related to the calcination temperature for preparation of amorphous VPO/C intermediate and LiVPO4F/C composite prepared by VPO/C synthesized at 700°C consists of a single crystal phase of LiVPO4F. The electrochemical tests show that LiVPO4F/C composite prepared by VPO/C synthesized at 700°C exhibits higher discharge capacity and excellent cycle performance. This LiVPO4F/C composite displays discharge capacity of 133 mAh g−1 at 0.5 C (78 mA g−1) and remains capacity retention of 96.8% after 30 cycles, even at a high rate of 5 C, the composite exhibits high discharge capacity of 115 mAh g−1 and capacity retention of 97% after 100 cycles.  相似文献   

19.
Mercury-selenosulfide (HgSe x S 1-x ) nanoparticles have been synthesized using the single-source reagent Me3Si–SeS–SiMe3. The reagent distributes Se2− and S2− to the metal core as the reaction between Me3Si–SeS–SiMe3 and mercury acetate occurs via a redox pathway, ultimately giving rise to Se–S bond cleavage. Particles are characterized by EDX, TEM and powder X-ray diffraction analysis in conjunction with UV–Visible absorption spectroscopy. Dedicated to Prof. Dr. Dieter Fenske on the occasion of his 65th birthday.  相似文献   

20.
The heats of solution of tetrabutylammonium bromide have been measured in mixtures of formamide (FA) with methanol (MeOH) and ethylene glycol (EG) at 313.15 K by calorimetric method. The standard enthalpies of solution in binary mixtures have been extrapolated to infinite dilution by Redlich–Rosenfeld–Meyer type equation using the literary data at 298.15 K and the present paper data at 313.15 K. The Debye–Hückel limiting law slope A H required for calculation of the ∆sol H 0 value has been obtained with application the new additive scheme of determination of the physic-chemical characteristics of binaries. The scheme is tested on the example of Bu4NBr solutions in FA–MeOH mixture at 298.15 K. Its application yields the ∆sol H 0 value very closed on the ones determined with the real (non-additive) characteristics of binaries. The standard enthalpies of solution extrapolated by Redlich–Rosenfeld–Meyer type equation are in a good agreement with the ones computed in terms of the Debye–Hückel theory in the second approximation. The heat capacities characteristics of Bu4NBr have been calculated in H2O–FA, MeOH–FA and EG–FA mixtures using the literary and present data. The sequence of solvents H2O > FA > EG > MeOH located on their ability to solvophobic solvation found by us earlier for enthalpic characteristics is confirmed by the ∆C p 0 values. The comparison of thermochemical characteristics of Bu4NBr solutions in aqueous and non-aqueous mixtures containing FA has been carried out. The own structure of water remains in the region of small additions of formamide to co-solvents. It considerably differs the H2O–FA mixture from the investigated non-aqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号