首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings. Received: 14 May 1999/Accepted: 8 October 1999  相似文献   

2.
The heat transfer and pressure drop characteristics of heat exchangers having louver fins were experimentally investigated. The samples had small fin pitches (1.0–1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). Below a certain Reynolds number (critical Reynolds number), the fall-off of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L p /F p ) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. The heat transfer coefficient curves crossed over as the Reynolds number decreased. Possible explanation is provided considering the louver pattern between neighboring rows. Different from the heat transfer coefficient, the friction factor did not show the fall-off characteristic. The reason was attributed to the form drag by louvers, which offsets the decreased skin friction at low Reynolds numbers. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 94% of the friction factor within ±10%.  相似文献   

3.
Natural convection heat transfer from a vertical isothermal plate with pin fins is numerically studied by solving the Navier–Stokes equations along with the energy equation. The average Nusselt number for the plate with different configurations of pin fins is obtained. The average Nusselt number is found to increase with increasing aspect ratio of the fin and to decrease with increasing angle of fin inclination with respect to the plate. There is only a minor difference between the average Nusselt numbers for in-line and staggered arrangement of fins for the range of parameters studied in the present work. A correlation is developed to predict the average Nusselt number of the plate as a function of fin spacing in the streamwise and spanwise directions, aspect ratio of the fin, and its angle of inclination.  相似文献   

4.
In the present study, the potential of rectangular fins with 30° and 90° angle and 10 mm offset from the horizontal direction for heat transfer enhancement in a plate fin heat exchanger is numerically evaluated with conjugated heat transfer approach. The rectangular fins are mounted on the flat plate channel. The numerical computations are performed by solving a steady, three-dimensional Navier–Stokes equation and an energy equation by using Fluent software program. Air is taken as working fluid. The study is carried out at Re = 400 and inlet temperatures, velocities of cold and hot air are fixed as 300, 600 K and 1.338, 0.69 m/s, respectively. Colburn factor j versus Re design data is presented by using Fluent. The results show that the heat transfer is increased by 10 % at the exit of channel with fin angle of 30° when compared to channel without fin for counter flow. The heat transfer enhancement with fins of 30° and 90° for different values of Reynolds number with 300, 500 and 800 and for varying fin heights, fin intervals and also temperature distributions of fluids on the top and bottom surface of the channel are investigated for parallel and counter flow.  相似文献   

5.
This paper presents an analysis of the problem of a thin fin of finite thermal conductivity, with an isothermal line source at the base, dissipating heat to the surrounding air by natural convection. The horizontal surface to which the fin is attached is adiabatic so that heat is dissipated only through the fin. The temperature and velocity distributions in the field, the temperature profile in the fin, local Nusselt numbers along the fin and the average heat transfer coefficient of the fin are obtained by solving the governing equations in the field and the heat transfer equation in the fin simultaneously, using an explicit unsteady Finite Difference formulation leading to the steady state result. Numerical experiments are performed to study the influence of parameters namely the fin height, temperature of the heating source and the fin material on the average heat transfer coefficient. Comparison is made with fins of infinite thermal conductivity and the vertical isothermal flat plate.  相似文献   

6.
Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method.  相似文献   

7.
Experimental studies on flow visualization and heat transfer measurements of finned surface in a narrow duct were carried out to understand the flow behavior and its effect on heat transfer. In this experiment, short rectangular fins were attached to a surface (endwall) with having inclination angle of 20° and exposed to air flow. Several flow visualization results reveal that horse shoe vortex was formed just at the front of the fin whereas the main longitudinal vortex was formed by the side top edge of the fin. Some important features of the vortex structure, size and flow reattachment positions were noticed from the smoke flow visualization. Detailed heat transfer distributions were discussed from the thermal image. Nusselt number shows that the finned surface achieved average heat transfer enhancement at a factor of four times than that of without fins.  相似文献   

8.
The dominant thermal resistance for most compact heat exchangers occurs on the gas side and as such an understanding of the gas side flowfield is needed before improving current designs. Louvered fins are commonly used in many compact heat exchangers to increase the surface area and initiate new boundary layer growth. For this study, detailed flowfield measurements were made in the entry region of several louvered fin geometries whereby the louver angle, ratio of fin pitch to louver pitch, and Reynolds number were all varied. In addition to mean velocity measurements, time-resolved velocity measurements were made to quantify unsteady effects.

The results indicated larger fin pitches resulted in lower average flow angles in the louver passages and longer development lengths. Larger louver angles with a constant ratio of fin pitch to louver pitch resulted in higher average flow angles and shorter development lengths. As the Reynolds number increased, longer development lengths were required and higher average flow angles occurred as compared with a lower Reynolds number case. Time-resolved velocity measurements indicated some flow periodicity behind the fully developed louver for a range of Reynolds numbers. The Strouhal number of these fluctuations was constant for a given louver geometry, but the value increased with increasing fin pitch.  相似文献   


9.
Enhancement of heat transfer to the fluid can be done by turbulence promoters such as attached fins to the pipe walls. In this study, the flow field and the heat transfer rates were numerically investigated in a pipe with an internally attached fin. Numerical simulations were conducted for four different types of fluids and for different fin heights and locations, and as the Reynolds number was varied, the effects of the fin on Nusselt number and friction factors were investigated. For all the Reynolds numbers considered in this study, the effect of fin location on the heat transfer rate and friction factor was negligible. As the fin height was increased, the mean Nusselt number and the friction factor also increased in the turbulent flow regimes. For low Prandtl number fluids (Pr = 0.011), the main heat transfer mode is conduction, and hence the mean Nusselt number slightly affected the flow rates.  相似文献   

10.
Experiments were performed to investigate the effect of duct height on heat transfer enhancement of a surface affixed with arrays (7 × 7) of short rectangular plate fins of a co-rotating type pattern in the duct. An infrared imaging system is used to measure detailed distributions of the heat transfer at the endwall along with the fin base. An infrared camera of TVS 8000 with 160 × 120 point In–Sb sensor was used to measure the temperature distributions in order to calculate the local heat transfer coefficients of the representative fin regions. Pressure drop and heat transfer experiments were performed for a co-rotating fin pattern varying the duct height from 20?50 mm. The friction factor calculated from the pressure drop shows that comparatively larger friction occurs for the smaller duct cases and the friction factor slowly decreases with increasing Reynolds number. The effect of duct height on the area-averaged heat transfer results show that heat transfer initially increases with duct height and then finally decreases with increasing the duct height. Detailed heat transfer analysis and iso-heat transfer coefficient contour gives a clear picture of heat transfer characteristics of the overall surface. The relative performance graph indicates that a 25 mm duct is the optimum duct height for the highest thermal performance. In addition, a significant thermal enhancement, 2.8?3.8 times the smooth surface, can be achieved at lower Reynolds number with a co-rotating fin pattern in the duct.  相似文献   

11.
It has been experimentally researched that convective heat transfer and pressure loss characteristics in rectangular channels with staggered arrays of drop-shaped pin fins in crossflow of air. The effects of arrangements of pin fins on heat transfer and resistance are discussed and the row-by-row variations of the mean Nusselt numbers are presented. By means of the heat/mass transfer analogy and the naphthalene sublimation technique, the heat transfer coefficients on pin fins and on endwall (base plate) of the channel have been achieved respectively. The total mean heat transfer coefficients of pin fin channels are calculated and the resistance coefficients are also investigated. The experimental results show that heat transfer of a channel with drop-shaped pin fins is higher than that with circular pin fins while the resistance of the former is much lower than that of the latter in the Reynolds number range from 900 to 9000. Received on 20 January 1997  相似文献   

12.
This work introduces a simple method of analysis to study the performance of porous fins in a natural convection environment. The method is based on using energy balance and Darcy’s model to formulate the heat transfer equation. The thermal performance of porous fins is then studied for three types of fins: long fin, finite-length fin with insulated tip and a finite-length fin with tip exposed to a known convection coefficient. It is found from the analysis that the effect of different design and operating parameters such as: Ra number, Da number, thermal conductivity ratio, Kr and length thickness ratio on the temperature distribution along the fin is grouped into one newly defined parameter called S_H. The effect of the variation of S_H on the porous fin thermal performance is established. The effect of varying the fin length and thermal conductivity ratio on the heat transfer rate from the fin is investigated and compared with that for a solid fin at certain conditions. It is found that the heat transfer rate from porous fin could exceed that of a solid fin. It is also found that increasing the fin length and effective thermal conductivity enhances the heat transfer from the fin up certain limit, where a further increase in these parameters adds no improvement to the fin performance. On Leave from Jordan University of Science and Technology, Irbid-Jordan  相似文献   

13.
In this study, a steady, fully developed laminar forced convection heat augmentation via porous fins in isothermal parallel-plate duct is numerically investigated. High-thermal conductivity porous fins are attached to the inner walls of two parallel-plate channels to enhance the heat transfer characteristics of the flow under consideration. The Darcy–Brinkman–Forchheimer model is used to model the flow inside the porous fins. This study reports the effect of several operating parameters on the flow hydrodynamics and thermal characteristics. This study demonstrates, mainly, the effects of porous fin thickness, Darcy number, thermal conductivity ratio, Reynolds number, and microscopic inertial coefficient on the thermal performance of the present flow. It is found that the highest Nusselt number is achieved at fully filled porous duct which requires the highest pumping pressure. The results show that using porous fins requires less pumping pressure with comparable high heat augmentation weight against fully filled porous duct. It is found that higher Nusselt numbers are achieved by increasing the microscopic inertial coefficient (A), the Reynolds number (Re), and the thermal conductivity of the porous substrate k 2. The results show that heat transfer can be enhanced (1) with the use of high thermal conductivity fins, (2) by decreasing the Darcy number, and (3) by increasing microscopic inertial coefficient.  相似文献   

14.
Direct measurements of local heat flux and temperature from rotating cylinders have been carried out using Gardon type foil heat flux sensors and a power supply cum instrumentation slip ring set up. The local and average heat transfer results are presented covering a rotational Reynolds number range of 2 × 104 to 6.2 x 104 corresponding to the speeds varying from 400 to 1,400 rpm. A correlation has been derived for peripherally averaged values of Nusselt numbers: . The values of surface average Nusselt number for the cylinder under the present rotating conditions are found to be higher than for a stationary cylinder in crossflow and for a cylinder rotating about its own axis, in the range of present experiments.Research scholar on leave from Faculty of Engineering, Port Said, Egypt  相似文献   

15.
The results obtained from naphthalene sublimation heat/mass analogy experiments in selecting the optimum geometrical parameters of tube bank fin heat exchanger with fins mounted with vortex generators are compared with the results obtained from the condensing experiments of the real heat exchangers with vortex generators punched out on the fins. The results declare that VGs pouched or mounted on fin surfaces have only limited effects on heat transfer performance in the studied configurations; naphthalene sublimation method can be used to select fin patterns with reasonable reliability.  相似文献   

16.
An analysis is presented for fully developed laminar convective heat transfer of non-Newtonian power-law fluids in pipes with internal longitudinal fins and uniform outside wall temperature. The governing momentum and energy equations have been solved numerically, with the influence of fin conductance. The distributions of fin temperature, fluid temperature and local heat flux (both at finned and unfinned surfaces) are presented. These are shown to be strongly dependent on finned pipe geometry, fluid flow behavior index and the fin conductance. Values of overall Nusselt number indicated significant heat transfer enhancement over finless pipes. The flow behavior index affects the no. of fins which maximizes the overall Nusselt number.  相似文献   

17.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

18.
A computational study is performed on three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with aspect ratio (AR) of 10:1, oriented 120° from the direction of rotation. The Focus is on high rotation and high-density ratios effects on the heat transfer characteristics of the 120° orientation. The Reynolds stress model (RSM), which accounts for rotational effects are used to compute the turbulent flow and heat transfer in the rotating channel. The effects of rotation and coolant-to-wall density ratio on the fluid flow and heat transfer characteristics is reported on a range of rotation numbers and density ratios (0 < Ro < 0.25 and 0.07 < Δρ/ρ < 0.4). The computational results are in good agreement with experimental data within ±15%. The results show that the density ratio, rotation number and channel orientation significantly affect the flow field and heat transfer characteristics in the rotating rectangular channel. Flow reversal occurs at high rotation number and density ratio.  相似文献   

19.
The present article investigates the effect of locally variable heat transfer coefficient on the performance of extended surfaces (fins) subject to natural convection. Fins of different profiles have been investigated. The fin profiles presently considered are namely; straight and pin fin with rectangular (constant diameter), convex parabolic, triangular (conical) and concave parabolic profiles and radial fins with constant profile with different radius ratios. The local heat transfer coefficient was considered as function of the local temperature and has been obtained using the available correlations of natural convection for each pertinent extended surface considered. The performance of the fin has been expressed in terms of the fin efficiency. Comparisons between the present results for all fins considered and the results obtained for the corresponding fins subject to constant heat transfer coefficient along the fin are presented. Comparisons, i.e. showed an excellent agreement with the experimental results available in the literature. Results show that there is a considerable deviation between the fin efficiency calculated based on constant heat transfer coefficient and that calculated based on variable heat transfer coefficient and this deviation increases with the dimensionless parameter m.  相似文献   

20.
The present work submits an investigation about the optimal values of design parameters and performance analysis for a heat exchanger having cylindrical pin fins positioned in a rectangular channel. The experiments covered the following range: Reynolds number 13,500–42,000, the clearance ratio (C/H) 0, 0.33 and 1, the interfin spacing ratio (S y /D) 1.208, 1.944 and 3.417. In the experimentation, Taguchi method was employed, and Nusselt number and friction factor were considered as performance parameters. While the optimum parameters were determined, due to the goals (above aims) more than one being, the trade-off among goals was considered. First of all, each goal was optimized, separately. Then, all goals were optimized together, considering the priority of goals, and the optimum results were found to be Reynolds number of 42,000, fin height of 50 mm and pitch of 3.417. The performance analysis also was made under a constant pumping power constraint, and the results showed that the use of cylindrical pin fins may lead to an advantage on the basis of heat transfer enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号