首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The steering forces on an undriven, angled wheel mounting a 6-16 8PR tire were measured on a wheel test carriage at zero camber angle and at 1.5 km/h forward speed in a soil bin with sandy clay loam soil. The lateral force developed was found to be a function of slip angle, normal load, and inflation pressure for a particular soil condition. An exponential relationship could estimate the coefficient of lateral force of the 6-16 tire. The coefficients of this equation were found to be linearly related to inflation pressure. Rolling resistance of the wheel tested was found to be a function of slip angle, normal load, and inflation pressure for the soil condition tested. A linear relationship existed between the rolling resistance and slip angle, where the coefficients were found to be a function of inflation pressure and normal load. The generalized equations developed in the present study for estimating coefficients of lateral force and rolling resistance by taking both the tire and operating parameters into account, were found to be reasonably good by looking at the high coefficient of determination between experimental and estimated values.  相似文献   

4.
The tractive performance of a conventional 13.6–38 tractor driving wheel tyre was measured in 19 different fields using the NIAE Single Wheel Tester. In each field the performance was measured on the undisturbed ground and again in the rut formed by a previous run with the same tyre. The second run simulated the operation of the rear wheels on a four-wheel drive tractor.The performance during the second pass was generally better than during the first pass. On average, the coefficient of traction increased by 7%, rolling resistance reduced by 11% and maximum tractive efficiency increased by 5%. The improvement increased as ground conditions deteriorated but was never large enough to fully explain the differences in performance between two and four-wheel drive tractors previously measured. It is suggested, therefore, that these differences may be primarily due to the greater ease with which power, weight, implement size and working speed can be matched with four-wheel drive tractors.  相似文献   

5.
This paper discusses the loading of a typical central Anatolian soil by the most commonly used corn and wheat production agricultural equipment. It further describes the effect that loading and soil conditions have on soil strength, namely compaction, and proposes techniques for minimizing undesired soil compaction. Experiments were carried out on a typical central Anatolian medium-textured imperfectly drained clay loam soil (Cambisol). Three different tillage methods and subsequently the same field operations were used for each rotation. Shear strength, penetration resistance, bulk density and moisture variations were detected in four sampling periods at each rotation. Tillage reduced the soil strength with the mouldboard plough causing the greatest loosening. However, natural processes and the vehicular traffic caused the soil to be re-compacted to about the same values as before. In any of the cases the obtained parameters did not exceed the critical values for plant growth except the penetration resistance in the 20–30 cm depth layer during corn production.  相似文献   

6.
7.
Compaction effects and soil stresses were examined for four tractor tyres under three inflation pressures: 67, 100 and 150% of the recommended pressure. The four tyres were 18.4 R 38, 520/70 R 38, 600/65 R 38 and 650/60-38 and they carried a wheel load of 2590 kg. The 650/60-38 was a bias-ply tyre while the other three were radial tyres. Increased inflation pressure significantly increased all measured parameters: rut depth, penetration resistance and soil stress at 20 and 40 cm depth. The 18.4 R 38 caused a greater rut depth and penetration resistance than the other tyres, which did not differ significantly from each other. The soil stress was highest for the 18.4 R 38, followed by the 650/60-38. The low-profile tyres decreased compaction compared with the 18.4–38 tyre, mainly by allowing a lower inflation pressure. The use of low-profile tyres did not reduce compaction if not used at a lower inflation pressure. The bias-ply tyre caused a higher stress in the soil than the radial tyres when used with the same inflation pressure, but the compaction effects in terms of rut depth and penetration resistance were not greater for this tyre than for the radial low-profile tyres.  相似文献   

8.
Soil strain transducers were used to determine strain in an initially loose sandy loam soil in a soil bin beneath the centerline of an 18.4R38 radial-ply tractor drive tire operating at 10% travel reduction. The initial depth of the midpoints of the strain transducers beneath the undisturbed soil surface was 220 mm. Strain was determined in the vertical, longitudinal, and lateral directions. Initial lengths of strain transducers were approximately 118 mm for the longitudinal and lateral transducers and 136 mm for the vertical transducer. The tire dynamic load was 25 kN and the inflation pressure was 110 kPa, which was a recommended pressure corresponding to the load. In each of four replications, as the tire approached and passed over the strain transducers, the soil first compressed in the longitudinal direction, then elongated, and then compressed again. The soil was compressed in the vertical direction and elongated in the lateral direction. Mean natural strains of the soil following the tire pass were −0.200 in the vertical direction, +0.127 in the lateral direction, and −0.027 in the longitudinal direction. The mean final volumetric natural strain from the strain transducer data was −0.099, which was only 35% of the mean change in natural volumetric strain calculated from soil core samples, −0.286. This difference likely resulted from the greater length of the lateral strain transducer relative to the 69 mm lateral dimension of the soil cores. The strain transducer data indicated the occurrence of plastic flow in the soil during one of the four replications. These results indicate the complex nature of soil movement beneath a tire during traffic and emphasize a shortcoming of soil bulk density data because soil deformation can occur during plastic flow while soil bulk density remains constant.  相似文献   

9.
A consistent finite element model for a circular wheel is developed based on triangular and quasi-triangular domains and a piecewise linear displacement field. The minimum stress-rate principle of plasticity is used to obtain the solution of this two-dimensional continuum problem with internal unloading. A piecewise approximation of the Tresca yield condition is used. Elastic-plastic solutions of a wheel rolling on a rigid track under its own weight and a hub load are obtained for the first few revolutions until a steady state condition is reached. Shake-down conditions for the wheel are demonstrated.  相似文献   

10.
The objective of this study was to evaluate the effects of agricultural tire characteristics on variations of wheel load and vibrations transmitted from the ground to the tractor rear axle. The experiments were conducted on an asphalt road and a sandy loam field using a two-wheel-drive self-propelled farm tractor at different combinations of tractor forward speeds of approximately 0.6, 1.6 and 2.6 m/s, and tire inflation pressures of 330 and 80 kPa. During experiments, the vertical wheel load of the left and right rear wheels, and the roll, bounce and pitch accelerations of the rear axle center were measured using strain-gage-based transducers and a triaxial accelerometer. The wavelet and Fourier analyses were applied to measured data in order to investigate the effects of self-excitations due to non-uniformity and lugs of tires on the wheel-load fluctuation and rear axle vibrations. Values for the root-mean-square (RMS) wheel loads and accelerations were not strictly proportional and inversely proportional to the forward speed and tire pressure respectively. The time histories and frequency compositions of synthesized data have shown that tire non-uniformity and tire lugs significantly excited the wheel load and accelerations at their natural frequencies and harmonics. These effects were strongly affected by the forward speed, tire pressure and ground deformation.  相似文献   

11.
This paper presents a dynamic analytical model for tank train vibrations. The train is considered as a system of 27 degrees of freedom consisting of lateral, roll, yaw, vertical, and pitch motions for the vehicle body and its two bogies and lateral, roll and vertical motions for the four wheel-sets. Liquid sloshing in the tank is modeled using an equivalent mechanical mass-spring model. Coupling between the vehicle system and the railway track is realized through the interaction forces between the train and the rail, where the vertical and lateral irregularity profiles of the track are regarded as stationary ergodic Gaussian random processes and simulated by polynomial functions. Random vibration theory is used to obtain the response power spectral densities. Finally, numerical results for a typical test case including natural frequencies of a coupled system, frequency response functions, and output power spectral densities are presented.  相似文献   

12.
13.
A microcontroller-based embedded digital display and warning system was developed for measuring wheel slippage, velocity ratio, PTO torque, and draft requirement of active tillage machinery. The hardware system included magnetic pickup sensor for measuring the engine speed, load cells and amplifiers to measure and amplify the sensing unit signals of the draft, proximity sensors for wheel slip, and PTO torque transducer for measuring the torque requirement. It was provided with buzzers and LEDs to warn the operator, whenever slip and velocity ratio were not in the desired range based on the algorithm, for maximum fuel efficiency and tractive performance. It measured slippage, velocity ratio, torque and draft with a maximum absolute variation of 12.90%, 7.92%, 8.99% and 11.57%, respectively. The developed system can be easily adaptable to any combination of tractor and tillage implements, and guide the operator for better soil tilth with lesser energy input.  相似文献   

14.
Wheel/rail forces generated by wheel defects is known to be one of the contributing factors to track failure. Current strategy of removing wheels from service is dependent on the magnitude of the impact forces generated by these defects. These impact forces are estimated with wheel impact monitor established along a section of the railway track. This is also known as wayside monitoring. The impact load levels recorded by these monitors are recorded and the wheels that generate impact loads above a stated level (e.g. 400 kN) will be removed from service for maintenance. The question one poses is “What if the impact force generated by a given wheel is just below this level and stays at this level for extended period of time?” Will this, e.g. 380 kN, impact force do as much damage to the track as a 400 kN impact force if it is allowed in service? What are the implications of allowing a wheel that generate a seemingly acceptable level of 250 kN impact load to remain in service for extended period of time? In an attempt to answer these questions, a series of investigations were carried out to investigate the effect of impact loads on the propagation of a Vertical Split Head (VSH) defect found in the head of a 50 kg/m rail.  相似文献   

15.
Modern agricultural production requires research for new design and layout plans of the track-chained mover, providing a reduction in soil compaction. One of many ways to improve the efficiency of machine-tractor aggregate (MTA) use is to improve the geometry of the support part of the chain-track tractor. Flat geometry of the support part of a chain-track tractor with a semi-rigid suspension creates maximum pressure on soil with the first and last track rollers, which causes increased soil compaction. Research objective is to ensure the uniform pressure on soil from the tractor with a semi-rigid suspension by justifying the geometry of the supporting part of the track-chained mover.Based on experimental and theoretical studies a model of pressure distribution along the length of the support part was developed. Thus, the geometry of the support part of a track-chained tractor with a semi-rigid suspension was substantiated. Pressure decrease on soil and compaction reduction are achieved by changing the geometry of the support part and rational location of the tractor mass center. To achieve the elliptical geometry of the support part of a track-chained tractor with a semi-rigid suspension lower track rollers were placed at different heights.To test the formulas and to study the influence of the support part geometry, of the hitch height and the force on the hook of a track-chained tractor on soil compaction, experiments were conducted. As a model for experiment, the tractor actively used in agriculture was modernized; chain-track tractor T-170M1.03-55 with flat and elliptical caterpillar bypasses. The pressure was measured directly by pressure sensors that were placed into the ground. Soil density in the track left by a track-chained tractor mainly depends on mover pressure and the number of impacts per pass. Track-chained mover makes two impacts on soil with the flat support part. If the support part geometry is changed, the number of impacts on soil is reduced to one. To create typical working conditions for T-170M1.03-55 track-chained tractor the third and fourth support rollers should be lowered by 9.5 ± 1.5 mm, the second and fifth-by 4.5 ± 0.5 mm relatively, which leads to a decrease in the maximum pressure on soil and reduces its compaction in the track left by the mover by 15–25%.  相似文献   

16.
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen- Hedrick-Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.  相似文献   

17.
The track unevenness is a nonhomogenous random process and as such moving vehicles have nonstationary excitation induced by the ground. A simple formulation for response statistics differential equation has been obtained for multi-mass multi-wheeled vehicle system with general ground velocity. Results are presented for a linearised model with some typical track profiles and ground motions.  相似文献   

18.
The traffic performances during driving and braking of a 5.88 kN weight wheeled vehicle with two-axle four wheel drive, rear wheel drive, and front wheel drive running up and down a loose sandy sloped terrain were compared by means of a simulation. For the given dimensions of the vehicle and the given terrain-wheel system constants, the relationship between the effective tractive and braking effort of the vehicle, the amount of sinkage of the front and rear wheels, the total amount of sinkage of the vehicle, and the slip ratio were calculated to estimate the optimum height of force of application and the optimum eccentricity of the center of gravity of the vehicle. It was observed that, during driving action, the maximum effective tractive effort of the four wheel drive vehicle (4WD) was larger than that of the rear wheel drive vehicle (RWD), which in turn was greater than that of the front wheel drive vehicle (FWD). During the braking action, the effective braking effort at skid -20% of the four wheel vehicle (4WB) was larger than that of the front wheel brake vehicle (FWB), in turn greater than that of the rear wheel brake vehicle (RWB), when the two-axle four wheel vehicle is moving up or down the loose sandy sloped terrain. The maximum terrain slope angle up which the two-axle wheeled vehicle is able to move during driving action was found to be about 0.067π rad for the 4WD vehicle, about 0.031π rad for the RWD vehicle, and about 0.017π rad for the FWD vehicle. The effective braking effort at skid-20% of 4WB, FWB and RWB was found to decrease with slope angle.  相似文献   

19.
The response of a layered half-space to traffic loads moving along its surface   总被引:12,自引:0,他引:12  
Summary The dynamic behaviour of a railway system is influenced by the interaction of its three subsystems: the vehicles, the rail construction itself and the subsoil. In this paper, the subsoil is considered as a linear-elastic layered half-space. Integral transformations are used for the analysis of this system: Fourier transformation for the time/frequency domain and for the space/wavenumber domains with respect to the horizontal coordinates. One arrives at an ordinary differential equation for the vertical direction, by which different layers or continuously changing elastic properties can be taken into account in an efficient manner. The efficiency of the transformation technique depends substantially on the effort necessary for the inverse transformation. A substantial reduction of data can be achieved in an error-controlled procedure if a wavelet transformation is applied as an additional transformation. The calculations are illustrated by solutions of several examples of moving time-dependent loads, particularly of a train model with four vehicles idealized by moving forces, time depending as if they were passing a rigid surface with a given roughness. Received 23 December 1997; accepted for publication 22 July 1998  相似文献   

20.
Although it is well known that properly used Rollover Protective Structures (ROPS) can virtually prevent agricultural tractor rollover fatalities, the U.S. still has hundreds of these fatalities per year. An estimated 1.6 million tractors are not equipped with ROPS. Many of these tractors do not have ROPS commercially available although they were originally designed to support a ROPS. Some tractors have foldable ROPS that are not used properly. Other ROPS, although meet appropriate performance standards, are not effective at eliminating continuous rolls.To meet this need, a Computer-based ROPS Design Program (CRDP) was developed to quickly generate ROPS designs based on agricultural tractor weights and dimensions. The ROPS designed with the CRDP for the Allis Chalmers 5040 tractor successfully passed the SAE J2194 static longitudinal, transverse, and vertical tests. A simple foldable ROPS lift assist was designed and tested to ease in the raising and lowering of ROPS; decreasing the raising torque from 90 Nm to less than 50 Nm, while also lowering the resisting torque to lower the ROPS. A model to determine the critical ROPS height CRH based on off-road vehicle dimensions and center of gravity (CG) height was developed and evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号