首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Suppression of the selective cleavage at N‐terminal of proline is observed in the peptide cleavage by proteolytic enzyme trypsin and in the fragment ion mass spectra of peptides containing Arg‐Pro sequence. An insight into the fragmentation mechanism of the influence of arginine residue on the proline effect can help in prediction of mass spectra and in protein structure analysis. In this work, collision‐induced dissociation spectra of singly and doubly charged peptide AARPAA were studied by ESI MS/MS and theoretical calculation methods. The proline effect was evaluated by comparing the experimental ratio of fragments originated from cleavage of different amide bonds. The results revealed that the backbone amide bond cleavage was selected by the energy barrier height of the fragmentation pathway although the strong proton affinity of the Arg side chain affected the stereostructure of the peptide and the dissociation mechanism. The thermodynamic stability of the fragment ions played a secondary role in the abundance ratio of fragments generated via different pathways. Fragmentation studies of protonated peptide AACitPAA supported the energy‐dependent hypothesis. The results provide an explanation to the long‐term arguments between the steric conflict and the proton mobility mechanisms of proline effect.  相似文献   

2.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

3.
In this work, partial characterization of the primary structure of phycocyanin from the cyanobacterium Aphanizomenon flos‐aquae (AFA) was achieved by mass spectrometry de novo sequencing with the aid of chemical derivatization. Combining N‐terminal sulfonation of tryptic peptides by 4‐sulfophenyl isothiocyanate (SPITC) and MALDI‐TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC‐derivatized peptides underwent facile fragmentation, predominantly resulting in y‐series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20 or more amino acid residues. This strategy allowed us to carry out peptide fragment fingerprinting and de novo sequencing of several peptides belonging to both α‐ and β‐phycocyanin polypeptides, obtaining a sequence coverage of 67% and 75%, respectively. The presence of different isoforms of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI‐ and ESI‐MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon for a correct taxonomic identity of this species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A study has been undertaken to evaluate the usefulness of MALDI Q-TOF data for protein identification. The comparison of MS data of protein digests obtained on a conventional MALDI TOF instrument to the MS data from the MALDI Q-TOF reveal peptide patterns with similar intensity ratios. However, comparison of MS/MS Q-TOF data produced by nanoelectrospray versus MALDI reveals striking differences. Peptide fragment ions obtained from doubly charged precursors produced by nanoelectrospray are mainly y-type ions with some b-ions in the lower mass range. In contrast, peptide fragment ions produced from the singly charged ions originating from the MALDI source are a mixture of y-, b- and a-ions accompanied by ions resulting from neutral loss of ammonia or water. The ratio and intensity of these fragment ions is found to be strongly sequence dependent for MALDI generated ions. The singly charged peptides generated by MALDI show a preferential cleavage of the C-terminal bond of acidic residues aspartic and glutamic acid and the N-terminal bond of proline. This preferential cleavage can be explained by the mobile proton model and is present in peptides that contain both arginine and an acidic amino acid. The MALDI Q-TOF MS/MS data of 24 out of 26 proteolytic peptides produced by trypsin or Asp-N digestions were successfully used for protein identification via database searching, thus indicating the general usefulness of the data for protein identification. De novo sequencing using a mixture of 160/18O water during digestion has been explored and de novo sequences for a number of peptides have been obtained.  相似文献   

5.
By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in the high mass range of the MS/MS spectra. The mass difference between this signal and the protonated molecular ion corresponds to the mass of the C-terminal residue. It allowed a straightforward identification of the amino acid positioned at this extremity. It must be emphasized that a neutral residue loss can be misattributed to the formation of a ym-1 ion, i.e., to the loss of the N-terminal residue following the a1-ym–1 fragmentation channel. Extreme caution must be adopted when reading the direct sequence ion on the positive ion MS/MS spectra of singly charged peptides not to mix up the attribution of the N- and C-terminal amino acids. Although such peculiar fragmentation behavior is of obvious interest for de novo peptide sequencing, it can also be exploited in proteomics, especially for studies involving digestion protocols carried out with proteolytic enzymes other than trypsin (Lys-N, Glu-C, and Asp-N) that produce arginine-containing peptides.  相似文献   

6.
We report non‐chiral amino acid residues cis‐ and trans‐1,4‐diaminocyclohexane‐1‐carboxylic acid (cyclo‐ornithine, cO) that exhibit unprecedented stereospecific control of backbone dissociations of singly charged peptide cations and hydrogen‐rich cation radicals produced by electron‐transfer dissociation. Upon collision‐induced dissociation (CID) in the slow heating regime, peptide cations containing trans‐cO residues undergo facile backbone cleavages of amide bonds C‐terminal to trans‐cO. By contrast, peptides with cis‐cO residues undergo dissociations at several amide bonds along the peptide ion backbone. Diastereoisomeric cO‐containing peptides thus provide remarkably distinct tandem mass spectra. The stereospecific effect in CID of the trans‐cO residue is explained by syn‐facially directed proton transfer from the 4‐ammonium group at cO to the C‐terminal amide followed by neighboring group participation in the cleavage of the CO―NH bond, analogous to the aspartic acid and ornithine effects. Backbone dissociations of diastereoisomeric cO‐containing peptide ions generate distinct [bn]+‐type fragment ions that were characterized by CID‐MS3 spectra. Stereospecific control is also reported for electron‐transfer dissociation of cis‐ and trans‐cO containing doubly charged peptide ions. The stereospecific effect upon electron transfer is related to the different conformations of doubly charged peptide ions that affect the electron attachment sites and ensuing N―Cα bond dissociations.  相似文献   

7.
In this contribution, linear poly(ethylene imine) (PEI) polymers, which are of importance in gene delivery, are investigated in detail by using electrospray ionization‐quadrupole‐time of flight (ESI‐Q‐TOF) and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry (MS). The analyzed PEIs with different end groups were synthesized using the polymerization of substituted 2‐oxazoline via a living cationic ring‐opening polymerization (CROP) and a subsequent hydrolysis under acidic conditions. The main goal of this study was to identify linear PEI polymers in a detailed way to gain information about their fragmentation pathways. For this purpose, a detailed characterization of three different linear PEIs was performed by using ESI‐Q‐TOF and MALDI‐TOF MS in combination with collision‐induced dissociation (CID) experiments. In ESI‐MS as well as MALDI‐MS analysis, the obtained spectra of PEIs resulted in fitting mass distributions for the investigated PEIs. In the tandem MS analysis, a 1,2‐hydride shift with a charge‐remote rearrangement via a four‐membered cyclic transition state, as well as charge‐induced fragmentation reactions, was proposed as the main fragmentation mechanisms according to the obtained fragmentation products from the protonated parent peaks. In addition, heterolytic and homolytic cleavages were proposed as alternative fragmentation pathways. Moreover, a 1,4‐hydrogen elimination was proposed to explain different fragmentation products obtained from the sodiated parent peaks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Mono‐ and poly‐adenosine diphosphate (ADP)‐ribosylation are common post‐translational modifications incorporated by sequence‐specific enzymes at, predominantly, arginine, asparagine, glutamic acid or aspartic acid residues, whereas non‐enzymatic ADP‐ribosylation (glycation) modifies lysine and cysteine residues. These glycated proteins and peptides (Amadori‐compounds) are commonly found in organisms, but have so far not been investigated to any great degree. In this study, we have analyzed their fragmentation characteristics using different mass spectrometry (MS) techniques. In matrix‐assisted laser desorption/ionization (MALDI)‐MS, the ADP‐ribosyl group was cleaved, almost completely, at the pyrophosphate bond by in‐source decay. In contrast, this cleavage was very weak in electrospray ionization (ESI)‐MS. The same fragmentation site also dominated the MALDI‐PSD (post‐source decay) and ESI‐CID (collision‐induced dissociation) mass spectra. The remaining phospho‐ribosyl group (formed by the loss of adenosine monophosphate) was stable, providing a direct and reliable identification of the modification site via the b‐ and y‐ion series. Cleavage of the ADP‐ribose pyrophosphate bond under CID conditions gives access to both neutral loss (347.10 u) and precursor‐ion scans (m/z 348.08), and thereby permits the identification of ADP‐ribosylated peptides in complex mixtures with high sensitivity and specificity. With electron transfer dissociation (ETD), the ADP‐ribosyl group was stable, providing ADP‐ribosylated c‐ and z‐ions, and thus allowing reliable sequence analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo‐molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI‐induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges.  相似文献   

10.
Application of matrix‐assisted laser‐desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3‐hydroxypicolinic acid (3‐HPA) and α‐cyano‐4‐hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3‐HPA and CCA were found to be hot matrices, and 3‐HPA not as good as CCA and 2,5‐dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3‐HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive‐ion and negative‐ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (?80 Da) and phosphoric acid (?98 Da) from the phosphorylated‐residue‐containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for ‘sweet’ spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in‐solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass‐to‐charge values and LIFT TOF‐TOF spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
We present the MALDI‐TOF/TOF‐MS analyses of various hapten–bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer‐equipped, terminal monosaccharide of the O‐specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten–BSA neoglycoconjugates with different hapten–BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI‐TOF/TOF‐MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI‐TOF/TOF‐MS/MS of the glycated peptides. The product‐ion scans of the protonated molecules were carried out with a MALDI‐TOF/TOF‐MS/MS tandem mass spectrometer equipped with a high‐collision energy cell. The high‐energy collision‐induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y‐series product ions was very useful for the sequencing of various peptides. The series of a‐ and b‐product ions confirmed the sequence of the conjugated peptides. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization–ion trap–mass spectrometry (ESI–IT–MS), matrix‐assisted laser desorption/ionization reflectron time‐of‐flight (TOF) mass spectrometry (MALDI–RTOF–MS) and reflectron TOF secondary ion mass spectrometry (RTOF–SIMS). The samples were analyzed either directly without any treatment (RTOF–SIMS) or after a simple liquid/liquid extraction step (ESI–IT–MS, MALDI–RTOF–MS and RTOF–SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF–SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI–IT‐ and MALDI–RTOF–MS‐generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI–IT–MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so‐called ‘soft’ desorption/ionization techniques exhibited intense fragmentation only by applying low‐energy collision‐induced dissociation (CID) tandem MS on a multistage ion trap‐instrument and high‐energy CID on a tandem TOF‐instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT‐instrument (collision energy in the very low eV range) or the TOF/RTOF‐instrument (collision energy 20 keV), but both delivered important structural information. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Peptide fragments such as b and y sequence ions generated upon low‐energy collision‐induced dissociation have been routinely used for tandem mass spectrometry (MS/MS)‐based peptide/protein identification. The underlying formation mechanisms have been studied extensively and described within the literature. As a result, the ‘mobile proton model’ and ‘pathways in competition model’ have been built to interpret a majority of peptide fragmentation behavior. However, unusual peptide fragments which involve unfamiliar fragmentation pathways or various rearrangement reactions occasionally appear in MS/MS spectra, resulting in confused MS/MS interpretations. In this work, a series of unfamiliar c ions are detected in MS/MS spectra of the model peptides having an N‐terminal Arg or deuterohemin group upon low‐energy collision‐induced dissociation process. Both the protonated Arg and deuterohemin group play an important role in retention of a positive charge at the N‐terminus that is remote from the cleavage sites. According to previous reports and our studies involving amino acid substitutions and hydrogen–deuterium exchange, we propose a McLafferty‐type rearrangement via charge‐remote fragmentation as the potential mechanism to explain the formation of c ions from precursor peptide ions or unconventional b ions. Density functional theory calculations are also employed in order to elucidate the proposed fragmentation mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The use of mass spectrometry coupled with chemical cross‐linking of proteins has become one of the most useful tools for proteins structure and interactions studies. One of the challenges in these studies is the identification of the cross‐linked peptides. The interpretation of the MS/MS data generated in cross‐linking experiments using N‐hydroxy succinimide esters is not trivial once a new amide bond is formed allowing new fragmentation pathways, unlike linear peptides. Intermolecular cross‐linked peptides occur when two different peptides are connected by the cross‐linker and they yield information on the spatial proximity of different domains (within a protein) or proteins (within a complex). In this article, we report a detailed fragmentation study of intermolecular cross‐linked peptides, generated from a set of synthetic peptides, using both ESI and MALDI to generate the precursor ions. The fragmentation features observed here can be helpful in the interpretation and identification of cross‐linked peptides present in cross‐linking experiments and be further implemented in search engine's algorithms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Porphyrin amino acid conjugates with one or two porphyrin units were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The ESI-MS spectra of all the porphyrins studied, obtained in positive ion mode, show the presence of the corresponding protonated molecule [M+H]+; ESI-MS spectra of diporphyrinyl compounds also show the doubly charged ions [M+2H]2+. The fragmentations of these ions induced by collision with argon were studied (ESI-MS/MS). ESI-MS/MS gives detailed structural information about the amino acids associated with the porphyrin. Cleavage of the bonds in the vicinity of the porphyrin moiety and those involving the side chain of amino acid residues gives structural information about this type of association. A fragmentation common to all derivatives corresponds to the cleavage of the phenyl-CO bond. The expected cleavage of the amide bond, that links the porphyrin to the amino acid moiety, is a minor fragmentation, which in some cases is even absent. The MS/MS spectra of the monoporphyrinyl derivatives show product ions characteristic of the amino acid linked to the porphyrin; the fragmentation also indicates when the amino acids has a terminal carboxylic group or a terminal ester group. The fragmentations of the diporphyrinyl compounds occur mainly by the cleavage of the spacer, leading, in the case of the doubly charged ions, to predominantly mono-charged ions, indicating a preferential location of the two protons in separated porphyrinic units.  相似文献   

17.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

18.
A novel approach to high‐throughput sequence deconvolution of on‐bead small peptides (MW < 2000 Da) using on‐target MALDI‐TOF/TOF instrumentation is presented. Short peptides of pentamer and octamer length, covalently attached to TentaGel polystyrene beads through a photolabile linker, were placed onto the MALDI target, apportioned with suitable matrix (2,5‐dihydroxybenzoic acid) and then hit with the instrument laser (Nd : YAG, 355 nm). This induced easy and highly reproducible photochemical cleavage, desorption (MS mode) and fragmentation (MS/MS mode). Peptide fragments were identified with a mass accuracy of 0.1 Da of the expected values. This technique significantly accelerates the sequence determination of positive peptide hits obtained from random combinatorial libraries when screening against biological targets, paving the way for a rapid and efficient method to identify molecular imaging ligands specific to pathological targets in cancer and other diseases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
An investigation of phosphate loss from phosphopeptide ions was conducted, using both atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) and electrospray ionization (ESI) coupled to an ion trap mass spectrometer (ITMS). These experiments were carried out on a number of phosphorylated peptides in order to investigate gas phase dephosphorylation patterns associated with phosphoserine, phosphothreonine, and phosphotyrosine residues. In particular, we explored the fragmentation patterns of phosphotyrosine containing peptides, which experience a loss of 98 Da under collision induced dissociation (CID) conditions in the ITMS. The loss of 98 Da is unexpected for phosphotyrosine, given the structure of its side chain. The fragmentation of phosphoserine and phosphothreonine containing peptides was also investigated. While phosphoserine and phosphothreonine residues undergo a loss of 98 Da under CID conditions regardless of peptide amino acid composition, phosphate loss from phosphotyrosine residues seems to be dependent on the presence of arginine or lysine residues in the peptide sequence.  相似文献   

20.
Structure analyses of underivatized neutral lacto oligosaccharides are systematically performed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI TOF MS) and UV-MALDI ion-trap time-of-flight mass spectrometry (ion-trap/TOF MS) acquired in negative-ion mode. Interestingly, their fragmentation significantly differ each other. In postsource decay (PSD) in UV-MALDI TOF MS, cross-ring cleavage at the reducing terminal predominates. On the other hand, glycosyl bond cleavage (C-type fragmentation) takes place preferentially in collision induced dissociation (CID) in UV-MALDI ion-trap/TOF MS. The cross-ring cleavage in PSD similar to that in in-source decay occurs via a prompt reaction path characteristic of the UV-MALDI process itself. The product ion spectra of UV-MALDI ion-trap/TOF MS are similar to the electrospray ionization (ESI) ion-trap or quadrupole/TOF CID product ion spectra. During ion-trap/TOF MS experiments, the deprotonated molecular ions survive for several tens of milliseconds after CID event because the high internal energy chlorinated precursor ions are cooled by collisional cooling in the ion trap. The results obtained suggest that the PSD from the chlorinated precursor ion in UV-MALDI TOF MS might proceed as a two-step reaction; in the first, a high internal energy deprotonated molecular ion is generated as a reaction intermediate during the flight in the drift tube, and in the second, the rapid decomposition from the deprotonated molecular ion takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号