首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
A lap‐shear joint mechanical testing method has been probed to measure the surface glass transition temperature (T) of the thick bulk films of high‐molecular‐weight polymers. As T, the temperature transition “occurrence of autoadhesion–nonoccurrence of autoadhesion” has been proposed. The influence of chain flexibility, of molecular architecture, of polymer morphology, and of chain ends concentration on the T has been investigated. The correlation between the reduction in T with respect to the glass transition temperature of the bulk (T) and the intensity of the intermolecular interaction in the polymer bulk in amorphous polymers has been found. The effect of surface roughness on T has been discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2012–2021, 2010  相似文献   

2.
Some properties of perfluorosulphonated ionomer membranes contaminated by a series of 10 counter ions were investigated by infrared spectroscopy (FTIR), thermogravimetric analysis coupled to mass spectroscopy (TG‐MS), and dynamic mechanical spectrometry (DMA). Distinctive parameters were extracted and regarded as a function of the cations' properties. An optimum interaction between sulfonate group and cation was found for cations with Lewis Acid Strength (LAS) in the 0.2–0.3 range. This critical value is found to be the Lewis Basic Strength (LBS‐) of the sulfonate anion in Nafion membrane. Thermal stability analyses also point out the influence of this cation parameter on the polymer degradation process. Cations with LAS values lower than LBS‐ improve the thermal stability of the side chains while cations with LAS values higher than LBS‐ enhance the thermal degradation. Moreover, the temperature of the modulus drop increases with the LAS of the counter ion. For cations with values lower 0.5, the transition is attributed to the glass relaxation of the polymer while for cations showing LAS values higher than 0.5, the loss of stiffness originates from the polymer thermal degradation process. The overview of the experimental data allows the definition of calibration curves as a function of the cations' LAS. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1381–1392, 2009  相似文献   

3.
We present the dynamics of a series of three paramagnetic molecules of different volume, mass, and shape in amorphous glass‐forming polymer poly(isobutylene) (PIB) as investigated by means of electron spin resonance (ESR) technique. The reorientation behavior of spin probes is related to the ortho‐positronium (o‐Ps) annihilation in PIB from positron annihilation lifetime spectroscopy (PALS) and the extracted free volume information. It is also related to the dynamic data of PIB from broadband dielectric spectroscopy (BDS), neutron scattering (NS), and nuclear magnetic resonance (NMR) spectroscopy from literature. In the case of the smallest spin probe, 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO), a discontinuous course of the spectral parameter 2Azz versus T dependence was observed and the subsequent phenomenological model‐free analyses of the spectral parameter, 2Azz versus T, as well as of the correlation time, τc, versus 1/T plots provided the characteristic ESR temperatures ( , T50G, ) and (T, T, T). These characteristic ESR temperatures were found to be consistent with the characteristic PALS temperatures: T, T = T from temperature dependences of the mean o‐Ps lifetime, τ3, or the width of o‐Ps lifetime distribution, σ3, respectively. In addition, the relationships between the spin probe size, V, and the free volume hole size distributions gn(Vh) at the characteristic ESR temperatures indicate the significant influence of the free volume fluctuation at the crossover from slow to rapid regime as well as within the rapid motional regime. On the other hand, the two larger spin probes exhibit a rather continuous 2AzzT plots with the respective T50G's lying in the vicinity of T independently of their volume, mass and shape, suggesting the common origin of underlying process controlling this T50G transition. Finally, these mutual PALS and ESR findings were compared with the known dynamic behavior of PIB which suggest that the dynamics of the TEMPO and the larger spin probes are related to free volume fluctuation associated with primary α ‐ and secondary β processes, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1058–1068, 2009  相似文献   

4.
A cyclohexyl‐based POCOP pincer ligand (POCOP=cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexyl) cyclometalates with nickel to generate a series of new POCOP‐supported NiII complexes, including the halide, hydride, methyl, and phenyl species. trans‐[NiCl{cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexane}], [(POCOP)NiCl] ( 1 a ) and the analogous bromide complex ( 1 b ) were synthesized and fully characterized by NMR spectroscopy and X‐ray crystallography. Cyclic voltammetry measurements of 1 a and 1 b alongside their bis(phosphine) analogues [(PCP)NiCl] ( 2 a ) and [(PCP)NiCl] ( 2 a ) (PCP=cis‐1,3‐bis(di‐tert‐butylphosphino)cyclohexyl) indicate a reduced electron density at the metal center upon introducing electron‐withdrawing oxygen atoms in the pincer arms. The methyl [(POCOP)NiMe] ( 3 ) and phenyl [(POCOP)NiPh] ( 4 ) complexes were formed from 1 a by reaction with the corresponding organolithium reagents. 1 a also reacts with LiAlH4 to give the hydride complex [(POCOP)NiH] ( 5 ). The methyl complex 3 reacts with phenyl acetylene to give the acetylide complex [(POCOP)NiCCPh] ( 6 ). The reactivity of compounds 3 – 5 towards CO2 was studied. The hydride complex 5 and the methyl complex 3 both underwent CO2 insertion to form the formate species [(POCOP)NiOCOH] ( 7 ) and acetate species [(POCOP)NiOCOCH3] ( 8 ), respectively, although with a higher barrier of insertion in the latter case. Compound 4 was unreactive towards CO2 even at elevated temperatures. Complexes 3 – 8 were all characterized by NMR spectroscopy and X‐ray crystallography.  相似文献   

5.
Low‐molecular‐weight polyacrylic acid with amine chain end used as a macromolecular intercalating agent was synthesized by radical polymerization using 2‐aminoethanethiol hydrochloride as chain transfer agent. Three polyacrylates (sodium polyacrylate‐t‐NH, calcium polyacrylate‐t‐NH, and zinc polyacrylate‐t‐NH) were prepared by neutralization from this polyacrylic acid using sodium hydroxide, zinc oxide, and calcium hydroxide as alkalies. The intercalation of ammonium‐terminated polyacrylic acid and polyacrylate was investigated by viscosity measurement, XRD, and TEM. Using this ammonium‐terminated polyacrylic acid as the intercalating agent, exfoliated polyacrylic acid/clay and polyacrylate/clay composites with a clay loading of ~30 and 20 wt %, respectively, were prepared through the evaporation of solvent from their clay suspensions. The thermal degradation of polyacrylic acid/clay and polyacrylate/clay composites was also studied by TGA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2335–2340, 2008  相似文献   

6.
A water‐soluble sample (TM4b), extracted from sclerotia of Pleurotus tuberregium, was analyzed using elemental analysis, one‐ and two‐dimensional 1H and 13C NMR. The results indicated that TM4b was protein–polysaccharide complex, and the polysaccharide moiety was hyperbranched β‐D ‐glucan with residuals branched at C3, C2, C4, and C6 positions. A preparative size‐exclusion chromatography (SEC) column combined with nonsolvent addition method was used to fractionate TM4b, and nine fractions were obtained. Solution properties of TM4b in 0.15 M aqueous NaCl were studied using static laser light scattering and viscometry at 25 °C. The dependences of intrinsic viscosity ([η]) and radius of gyration (〈S2〉) on weight–average molecular weight (Mw) for TM4b in the Mw range from 1.89 × 104 to 2.58 × 106 were found to be [η] = 0.21M and 〈S2〉 = 3.63M. It indicated that TM4b existed as compact sphere conformation in the aqueous solution. Atomic force microscopy image further confirmed that the TM4b molecules exhibited globular shape in the solution. This work gave valuable information on fractionation and chain conformation characterization of the globular protein–polysaccharide complex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2546–2554, 2007  相似文献   

7.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

8.
We perform high‐coordination three‐dimensional (3D) lattice simulations of a single chain of N monomers embedded in matrices of quenched chains, at different concentrations ρ, using pruned‐enriched Rosenbluth sampling. The partition function is well‐described by the expression, , where is a universal constant, and is the concentration dependent lattice connectivity constant. For sufficiently long chains, , we find that the radius of gyration R varies nonmonotonically with ρ; R decreases gradually from its unperturbed dimensions R0 until , after which it increases relatively rapidly due to repulsion between monomers. Motivated by the similarity in the shape of the curves, and results on Gaussian chains, we successfully superpose all the simulation data onto a single master curve. Finally, we test the relationship , suggested by a Flory‐type scaling model, where ρc is the critical percolation threshold, and is a universal constant. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1611–1619  相似文献   

9.
This contribution describes the reactivities of CO2, CO, O2, and ArNC with the pincer‐type complexes [(κPCP′‐POCOP)NiX] (POCOP=(R2POCH2)2CH; R=iPr; X=OSiMe3, NArH; Ar=2,6‐iPr2C6H3). Reaction of the amido derivative with CO2 and CO leads to a simple insertion into the Ni?N bond to give stable carbamate and carbamoyl derivatives, respectively, the pincer ligand backbone remaining intact in both cases. In contrast, the analogous reactions with the siloxide derivative produced kinetically labile insertion products that either revert to the starting material (in the case of CO2) or react further to give the mixed‐valent, dinickel species [(POCOP)NiII{μ,κOPP′‐OCOCH(CH2CH2OPR2)2}Ni0(CO)2]. The zero‐valent center in the latter compound is ligated by a new ligand arising from transformation of the POCOP ligand backbone. The carbonylation and carboxylation of the siloxido derivative also produced minor quantities of a side‐product identified as the trinickel species, [{(η3‐allyl)Ni(μOP‐R2PO)2}2Ni], arising from total dismantling of the POCOP ligand. Similar reactivities were observed with isonitrile, ArNC: reaction with the siloxido derivative resulted in a complex sequence of steps involving initial insertion, a 1,3‐hydrogen shift, and an Arbuzov rearrangement to give [Ni(CNAr)4] and a methacrylamide based on fragments of the POCOP ligand. Oxygenation of the amido and siloxido derivatives led to the phosphinate derivative, [(POCOP)Ni(OP(O)R2)], arising from oxidative transformation of the original ligand frame; the reaction with the Ni‐NHAr derivative also gave ArHNP(O)R2 through a complex N?P bond‐forming reaction.  相似文献   

10.
Dramatic rate enhancement of reductive elimination of [Ar‐Pd‐C] was observed in the presence of a phosphine/electron‐deficient olefin ligand. Through systematic kinetic investigations of the Negishi coupling of ethyl 2‐iodobenzoate with alkylzinc chlorides (see scheme), the rate constants for reductive elimination of [Ar‐Pd‐C] were determined to be greater than 0.3 s?1, which is about four or five orders of magnitude greater than values reported previously.

  相似文献   


11.
To investigate which of ammonium (NH) or nitrate (NO) is used by plants at gradient sites with different nitrogen (N) availability, we measured the natural abundance of 15N in foliage and soil extractable N. Hinoki cypress (Chamaecyparis obtusa Endlicher) planted broadly in Japan was selected for use in this study. We estimated the source proportion of foliar N (NH vs. NO) quantitatively using mass balance equations. The results showed that C. obtusa used mainly NH in N‐limited forests, although the dependence of C. obtusa on NO was greater in other NO‐rich forests. We regarded dissolved organic N (DON) as a potential N source because a previous study demonstrated that C. obtusa can take up glycine. Thus we added DON to our mass balance equations and calculated the source proportion using an isotope‐mixing model (IsoSource model). The results still showed a positive correlation between the calculated plant N proportion of NO and the NO pool size in the soil, indicating that high NO availability increases the reliance of C. obtusa on NO. Our data suggest the shift of the N source for C. obtusa from NH to NO according to the relative availability of NO. They also show the potential of the foliar δ15N of C. obtusa as an indicator of the N status in forest ecosystems with the help of the δ15N values of soil inorganic and organic N. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The mechanism of copper‐mediated Sonogashira couplings (so‐called Stephens–Castro and Miura couplings) is not well understood and lacks clear comprehension. In this work, the reactivity of a well‐defined aryl‐CuIII species ( 1 ) with p‐R‐phenylacetylenes (R=NO2, CF3, H) is reported and it is found that facile reductive elimination from a putative aryl‐CuIII‐acetylide species occurs at room temperature to afford the Caryl?Csp coupling species ( IR ), which in turn undergo an intramolecular reorganisation to afford final heterocyclic products containing 2H‐isoindole ( P , P , PHa ) or 1,2‐dihydroisoquinoline ( PHb ) substructures. Density Functional Theory (DFT) studies support the postulated reductive elimination pathway that leads to the formation of C?Csp bonds and provide the clue to understand the divergent intramolecular reorganisation when p‐H‐phenylacetylene is used. Mechanistic insights and the very mild experimental conditions to effect Caryl?Csp coupling in these model systems provide important insights for developing milder copper‐catalysed Caryl?Csp coupling reactions with standard substrates in the future.  相似文献   

13.
The electronic and magnetic properties of SrFeO2 with different magnetic configurations have been calculated via the plane‐wave pseudopotential density functional theory method, using the experimental lattice parameters. The results give an antiferromagnetic ground state for SrFeO2 with an absolute magnetic moment agreeing very well with the experimental report. In comparison with the counterparts whose magnetic moments are parallel to the c axis, the structures with spin moments parallel to the a (or b) axis exhibit no observable preference in total energy, but show different density distributions of the Fe 3d and Fe 3d states. The square‐planar crystal field splits the Fe 3d orbitals into a high‐level d, a low d, and intermediate dxy and dxz or dyz components. The exchange splitting is larger than the crystal‐field splitting, resulting in the high‐spin Fe 3d states. Referred to the triplet O2, the O‐vacancy formation energy from SrFeO3 to SrFeO2 has been deduced as well, along with its dependence on the temperature and O2 partial pressure. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

14.
1H and 13C NMR chemical shifts of iron porphyrin complexes are determined mainly by the spin densities at the peripheral carbon and nitrogen atoms caused by the interaction between paramagnetic iron 3d and porphyrin molecular orbitals. This review describes how the half‐occupied iron 3d orbitals such as dπ(dxz, dyz), dxy, d, and d‐ interact with a specific porphyrin molecular orbital and affect the 1H and 13C NMR chemical shifts in planar, ruffled, saddled, and domed complexes. Revealing the relationship between the orbital interactions and NMR chemical shifts is quite important to determine the fine electronic structures of synthetic iron porphyrin complexes as well as naturally occurring heme proteins.  相似文献   

15.
In recent years, Au‐cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au and Au, can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au+, Au and Au primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au and Au ions are enhanced relative to those for Au+, consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au and Au ions over the use of Au+ ions. Higher achievable primary ion currents for Au+ ions than for Au and Au allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au and Au for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Kinetics and mechanism of oxidation of β‐alanine by peroxomonosulfate (PMS) in the presence of Cu(II) ion at pH 4.2 (acetic acid/sodium acetate) has been studied. Autocatalysis was observed only in the presence of copper(II) ion, and this was explained due to the formation of hydroperoxide intermediate. The rate constant for the catalyzed (k) and uncatalyzed (k) reaction has been calculated. The kinetic data obtained reveal that both the reactions are first order with respect to [PMS]. k values initially increase with the increase in [β‐alanine] and reach a limiting value, but k values decrease with the increase in [β‐alanine]. k values increase linearly with the increase in [Cu(II)], whereas k values increase with [Cu(II)]2. Furthermore, k values are independent of [acetate], but k values decrease with the increase in acetate. A suitable mechanism has been proposed to explain the experimental observation. The reaction has been studied at different temperatures, and the activation parameters are calculated. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 44–49, 2008  相似文献   

17.
Thermally doped nitrogen atoms on the sp2‐carbon network of reduced graphene oxide (rGO) enhance its electrical conductivity. Atomic structural information of thermally annealed graphene oxide (GO) provides an understanding on how the heteroatomic doping could affect electronic property of rGO. Herein, the spectroscopic and microscopic variations during thermal graphitization from 573 to 1 373 K are reported in two different rGO sheets, prepared by thermal annealing of GO (rGOtherm) and post‐thermal annealing of chemically nitrogen‐doped rGO (post‐therm‐rGO). The spectroscopic transitions of rGO in thermal annealing ultimately showed new oxygen‐functional groups, such as cyclic edge ethers and new graphitized nitrogen atoms at 1 373 K. During the graphitization process, the microscopic evolution resolved by scanning tunneling microscopy (STM) produced more wrinkled surface morphology with graphitized nanocrystalline domains due to atomic doping of nitrogen on a post‐therm‐rGO sheet. As a result, the post‐therm‐rGO‐containing nitrogen showed a less defected sp2‐carbon network, resulting in enhanced conductivity, whereas the rGOtherm sheet containing no nitrogen had large topological defects on the basal plane of the sp2‐carbon network. Thus, our investigation of the structural evolution of original wrinkles on a GO sheet incorporated into the graphitized N‐doped rGO helps to explain how the atomic doping can enhance the electrical conductivity.  相似文献   

18.
Surface penetrated polymerization of tetrafluoroethylene (TFE) was carried out on a polycarbonate (PC) plate in supercritical fluoroform (scCHF3). Since the high diffusiveness is one of peculiar features of supercritical fluids, TFE monomers and initiators (perfluorinated benzoyl peroxide) could penetrate into the surface of polymer substrates and be photo‐polymerized. After washing physisorbed homopolymers on the surface, polytetrafluoroethylene (PTFE) was found to penetrate into 50–800 nm depth from the surface and covered the PC surface in the proportion of 85%. The surface coverage density and the penetration depth could be controlled by adjusting of the pressure of scCHF3. The TFE‐penetrated polymerization could be applied for various polymer plates such as polyethylene, polystyrene, polypropylene, poly(ethylene terephthalate), and polyimide. In addition to polymer plates, this technique could be applied to a cellulose paper, a nylon textile, and a porous PC membrane. The PTFE‐penetrated nylon textile showed a high resistance for washing test with detergents, compared with the commercial fluoropolymer‐sprayed nylon textile. The PTFE‐penetrated porous PC membrane showed high oxygen permeability (P/P = 5.2), compared with that of the untreated PC membrane (P/P = 3.5) in gas permeation experiments of O2 and N2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1577–1585, 2008  相似文献   

19.
The geometrical parameters, vibrational frequencies, and dissociation energies for H (n = 5–8) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The highest level of theory employed in this study is TZ2P CCSD(T). The C1 structure of H is predicted to be a global minimum, while the Cs structure of H is calculated to be a transition state. Harmonic vibrational frequencies are also determined at the DZP and TZ2P CCSD levels of theory. The dissociation energies, De, for H (n = 5–8) have been predicted using energy differences at each optimized geometry, and zero‐point vibrational energies (ZPVEs) are considered to compare with experimental values. The dissociation energies (Do) have been predicted to be 1.69, 1.65, 1.65, and 1.46 kcal · mol for H, H, H (C1 symmetry) and H, respectively, at the TZ2P CCSD(T) level of theory. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号