首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

2.
Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes were investigated and compared with those of linear‐type polyimide–silica hybrid membranes with similar chemical structures. Hyperbranched polyamic acid, as a precursor, was prepared by polycondensation of a triamine, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA). 6FDA‐TAPOB hyperbranched polyimide–silica hybrids were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) by sol–gel reaction. 5% weight‐loss temperature of the 6FDA‐TAPOB hyperbranched polyimide–silica hybrids determined by TG‐DTA measurement considerably increased with increasing silica content, indicating effective crosslinking at polymer–silica interface. CO2, O2, N2, and CH4 permeability coefficients of the 6FDA‐based polyimide–silica hybrids increased with increasing silica content. In addition, CO2/CH4 selectivity of the 6FDA‐TAPOB–silica hybrids remarkably increased with increasing silica content. From 129Xe NMR analysis, characteristic distribution and interconnectivity of cavities created around polymer–silica interface were suggested in the 6FDA‐TAPOB–silica hybrids. It was indicated that size‐selective separation ability is effectively brought by the incorporation of silica for the 6FDA‐TAPOB hyperbranched polyimide–silica hybrid membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 291–298, 2006  相似文献   

3.
End‐capped carbosilane macromolecules were prepared via the hydrosilation and continual addition of phenylethynyl, amine, bis(trimethylsilyl)amine, and cholesterol groups on the AB3‐type hyperbranched carbosilane polymer. The matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopic views of the end‐capped hyperbranched carbosilanes agreed with the expected mass distribution, in close regularity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3287–3293, 2001  相似文献   

4.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Benzophenone‐containing, anhydride‐terminated hyperbranched poly(amic acid)s were end‐capped by ortho‐alkyl aniline in situ and then chemically imidized, yielding autophotosensitive hyperbranched polyimides. The polyimides were soluble in strong polar solvents, such as N‐methyl‐2‐pyrrolidone, N‐dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Thermogravimetric analysis revealed their excellent thermal stability, with a 5 wt % thermal loss temperature in the range of 527–548 °C and a10 wt % thermal loss temperature in the range of 562–583 °C. The strong absorption of the polyimide films in ultraviolet–visible spectra at 365 nm indicated that the hyperbranched polyimides were patternable. Highly resolved images with a line width of 6 μm were developed by ultraviolet exposure of the polymer films. A well‐defined image with lines as thin as 3 μm was also patterned, but the lines were rounded at the edges. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2026–2035, 2003  相似文献   

6.
Novel acid‐terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid‐catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white‐spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans‐esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol‐functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3964–3974  相似文献   

7.
A new family of hyperbranched polymers with chemical bonds between the hyperbranched polyimide and polysilsesquioxane network was synthesized by the reaction of an amine‐terminated aromatic hyperbranched polyimide with 3‐glycidoxypropyl trimethoxysilane, followed by hydrolysis and polycondensation in the presence of an acid catalyst. The hyperbranched poly(imide silsesquioxane) membranes were fabricated by the casting the aforementioned polymer solution onto a NaCl optical flat, which was followed by heating at 80 °C for 24 h. The membranes were characterized by Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, N2 adsorption and desorption, and CO2 adsorption and desorption. The presence of covalent bonds between the hyperbranched polyimide and polysilsesquioxane segments had a significant effect on the properties of the membranes. N2 adsorption–desorption isotherms for these membranes showed surface areas of 6–16 m2/g, whereas CO2 adsorption–desorption isotherms showed much higher surface areas in the range of 106–127 m2/g. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3736–3743, 2003  相似文献   

8.
A new method for the synthesis of hyperbranched polymers involving the use of ABx macromonomers containing linear units have been investigated. Two types of novel hyperbranched polyurethanes have been synthesized by a one‐pot approach. The structures of monomers and polymers were characterized by elemental analysis, 1H NMR, 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The hyperbranched polymers have been proven to be extremely soluble in a wide range of solvents. Polymer electrolytes were prepared with hyperbranched polymer, linear polymer as the host, and lithium perchlorate (LiClO4) as the ion source. Analysis of the isotherm conductivity dependence of the ion concentration indicated that these hyperbranched polymers could function as a “solvent” for the lithium salt. The conductivity increased with the increasing concentration of hyperbranched polymers in the host polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 344–350, 2002  相似文献   

9.
A triamine monomer, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), was synthesized from phloroglucinol and 4‐chloronitrobenzene, and it was successfully polymerized into soluble hyperbranched polyimides (HB PIs) with commercially available dianhydrides: 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). Different monomer addition methods and different monomer molar ratios resulted in HB PIs with amino or anhydride end groups. From 1H NMR spectra, the degrees of branching of the amino‐terminated polymers were estimated to be 0.65, 0.62, and 0.67 for 6FDA–TAPOB, ODPA–TAPOB, and BTDA–TAPOB, respectively. All polymers showed good thermal properties with 10% weight‐loss temperatures (T10's) above 505 °C and glass‐transition temperatures (Tg's) of 208–282 °C for various dianhydrides. The anhydride‐terminated HB PIs showed lower T10 and Tg values than their amino‐terminated counterparts. The chemical conversion of the terminal amino or anhydride groups of the 6FDA‐based polyimides into an aromatic imido structure improved their thermal stability, decreased their Tg, and improved their solubility. The HB PIs had moderate molecular weights with broad distributions. The 6FDA‐based HB PIs exhibited good solubility even in common low‐boiling‐point solvents such as chloroform, tetrahydrofuran, and acetone. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3804–3814, 2002  相似文献   

10.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

11.
Three UV‐sensitive, hyperbranched‐poly(siloxysilane)‐based polymeric photoinitiators, bearing an alkyl phenone moiety linked to the surface of the hyperbranched polymer, were synthesized via the hydrosilylation of hyperbranched poly(siloxysilane) and modified UV‐sensitive compounds. Hyperbranched poly(siloxysilane) was prepared via the polyhydrosilylation of the AB2‐type monomer methylvinyldichlorosilane. The chemical structures of the polymeric photoinitiators were characterized with 1H, 13C, and 29Si NMR, elemental analysis, Fourier transform infrared, differential scanning calorimetry, UV spectrophotometry, and thermogravimetric analysis. The UV‐curing behaviors of the blends of the hyperbranched polymeric photoinitiators with UV‐curable epoxy acrylate (EA) resin were determined by Fourier transform infrared, and the results showed that the initiation efficiency of the polymeric photoinitiators was excellent and that the thermostability of the EA/polymeric photoinitiator curing systems was higher than that of the EA/photoinitiators. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3261–3270, 2006  相似文献   

12.
N,N′‐disubstituted hyperbranched polyureas with methyl, benzyl, and allyl substitutents were synthesized starting from AB2 monomers based on 3,5‐diamino benzoic acid. Carbonyl azide approach, which generates isocyanate group in situ on thermal decomposition, was used for the protection of isocyanate functional groups. The N‐substituted hyperbranched polymers can be considered as the new class of internally functionalized hyperbranched polyureas wherein the substituent can function either as receptor or as a chemical entity for selective transformations as a tool to tailor the properties. The chain‐ends were also modified by attaching long chain aliphatic groups to fully realize the interior functionalization. This approach opens up a possible synthetic route wherein different functional substituents can be used to generate a library of internally functionalized hyperbranched polymers. All the hyperbranched polyureas were characterized by FTIR, 1H‐NMR, DSC, TGA, and size exclusion chromatography. Degree of branching in these N,N′‐disubstituted hyperbranched polyureas, as calculated by 1H‐NMR spectroscopy using model compounds, was found to be lower than the unsubstituted hyperbranched polyurea and is attributed to the lower reactivity of N‐substituted amines compared to that of unsubstituted amines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5134–5145, 2004  相似文献   

13.
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006  相似文献   

14.
Several polycondensations of ethylene carbonate with succinic anhydride or glutaric anhydride (GA) were conducted in bulk. Low molar mass polyesters were obtained with pyridine‐type catalysts and GA. Analogous polycondensations of trimethylene carbonate (TMC) and GA were successful when quinoline, 4‐(N,N‐dimethylamino)pyridine, or BF3 · OEt2 was used as a catalyst. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed the formation of cyclic oligoesters and polyesters by backbiting degradation. Monomer mixtures containing an excess of TMC yielded copoly(ester carbonate)s with number‐average molecular weights up to 16,000 Da. Analogous copoly(ester carbonate)s were obtained from TMC and 3,3′‐tetramethylene glutaric anhydride. Furthermore, combined polycondensation/ring‐opening polymerization reactions of TMC and GA with L ‐lactide or ?‐caprolactone were studied. All copolymers were characterized by viscosity measurements and by IR, 1H, and 13C NMR spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4357–4367, 2002  相似文献   

15.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

16.
Polyamidoamine (PAMAM) dendrimers of generations zero (G0) to four (G4), and a hyperbranched polyurea (HB‐PU), were functionalized with 1,5‐dansyl (1,5‐D), 2,5‐dansyl (2,5‐D), 2,6‐dansyl (2,6‐D) and nitrobenzofurazan (NBD) fluorophores that change their fluorescence emission wavelength in response to chemical environment, and the resulting dendritic polymers were characterized by MALDI‐TOF mass spectrometry, 1H NMR, 13C NMR, and fluorescence spectroscopy. Fluorophore‐functionalized dendritic polymers were then reacted further with 3‐acryloxypropyldimethoxymethylsilane (AOP‐DMOMS) at various fluorophore to DMOMS substitution ratios. The resulting materials were cast onto glass slides, and cured into robust nanostructured coatings. Coatings with 50% fluorophore–50% DMOMS substitution showed the strongest fluorescence and the best physical properties. Coated coupons were tested against a wide range of analytes including the chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and chloroethylethylsulfide (CEES), and the water‐methanol‐ethanol series. It was found that the ability of the coatings to distinguish between analytes decreased with increasing cross‐link density for both dendrimer and hyperbranched polymer‐based coatings. It was also found that the percent fluorophore substitution and the type of dendritic polymer carrying the fluorophore had no significant effect upon fluorescence emission wavelength, but fluorescence emission wavelength became less dependent upon solvent with increasing dendrimer generation and molecular mass. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5101–5115, 2009  相似文献   

17.
A new AB2 monomer was synthesized for use in the preparation of a hyperbranched poly(aryl ether oxadiazole) with terminal phenol functionality. The AB2 monomer contains two phenolic groups and a single aryl fluoride group that is activated toward nucleophilic displacement by the attached oxadiazole ring. The nucleophilic substitution of the fluoride with the phenolate groups led to the formation of an ether linkage. Subsequently, a hyperbranched poly(aryl ether oxadiazole) having approximately a 44% degree of branching, as determined by a combination of model compound studies and 1H NMR, was obtained. The terminal phenolic groups underwent facile functionalization, furnishing hyperbranched polymers with a variety of functional chain ends. The nature of the chain‐end groups had a significant influence on the physical properties of the polymers, such as the glass‐transition temperature and their solubility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3851–3860, 2001  相似文献   

18.
The synthesis of amphiphilic linear‐hyperbranched graft‐copolymers in a grafting‐from approach is reported. The linear polyethylene with terminated hydroxyls, prepared by copolymerization of ethylene and 10‐undecen‐1‐ol, was used as macroinitiator for ring‐opening multibranching polymerization of glycidol by a typical slow monomer addition approach. Successful attachment of the hyperbranched grafts to the linear polyethylene backbone was confirmed by 1H/13C NMR, GPC, and TGA. The degree of polymerization and Mw/Mn of hyperbranched grafts were efficiently controlled by temperature, deprotonation ratio as well as the molar ratio of glycidol/hydroxyl (Nglycidol/NOH). The complicated microstructures caused by unsymmetric glycidol structure were analyzed by DEPT and 2D HSQC spectra, the degree of branching of 0.63–0.66 were calculated, indicating the extent of branch is close to theoretical values. The thermal analysis of linear‐hyperbranched copolymers via TGA and DSC is also presented. To our knowledge, this is the first report of a linear‐hyperbranched graft‐copolymer with a crystalline and nonpolar linear‐polyethylene segment. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2146–2154  相似文献   

19.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

20.
The collapse of alkali metal poly(acrylate) (PAAM) gels was investigated for various water/organic solvent mixture systems: methanol (MeOH), ethanol (EtOH), 2‐propanol (2PrOH), t‐butanol (tBuOH), dimethyl sulfoxide (DMSO), acetonitrile (AcN), acetone, tetrahydrofuran (THF), and dioxane. In order to ascertain the counterion specificity in the swelling behavior, four kinds of alkali metal counterions were used: Li+, Na+, K+, and Cs+. Remarkable solvent and counterion specificities were observed for every counterion species and every solvent system, respectively. For example, in aqueous EtOH the dielectric constants (Dcr) at which collapse occurred were in the order PAACs < PAALi < PAAK < PAANa. On the other hand, the Dcr at which PAALi gel collapsed increased in the order tBuOH < dioxane < THF < MeOH < 2PrOH < EtOH < acetone < AcN < DMSO, where the Dcr ranged from about 39 to about 67. This was in contrast to our previous observation for a partially quaternized poly(4‐vinyl pyridine) (P4VP) gel, which collapsed in a much narrower Dcr region in similar mixed solvents. The present solvent‐ and counterion‐specific collapses are discussed on the basis of solvent properties such as the dielectric constant and Gutmann's donor number and acceptor number of a pure solvent. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2791–2800, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号